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1.1 Introduction 

In these notes we will go through the concept and algebra of the derivative. These notes 

develop the concept and mathematics of differentiation from scratch, and assume no prior 

knowledge to, or understanding of, differentiation. We will do this as follows: 

1. We will look at how the idea of finding the slope of a straight line can be used as a 

starting point for finding the slope of a curve. Using this idea we will see that we 

will have to continually adjust the way we find the slope of a curve, and this will be 

done by the process of travelling along the curve;  

2. We will see that, in applying this process, the true slope we end up calculating is 

valid only at one point on the curve, not for the whole of the curve. Such a situation 

will then give rise to the new concepts of tangents and derivatives; 

3. We will then see that the direction in which we travel along the curve is important 

if we are to accept the slope of the curve to be what is; 

4. We will then discuss more deeply the idea of “travelling along the curve”, an 

important and fundamental concept to calculus which gives rise to the concept of 

“limits”, and which we will then make more rigorous via algebra; 

5. We will look at two ways in which the derivative of a function can be understood 

and represented as a function. Such an understanding will allow us more easily to 

find the slope of the curve at any point, anywhere along the curve, and not just for 

one point on the function. Another way of saying this is that this function will 

represent the derivative of the f(x) as a whole, and not tjust the derivative at one 

point of f(x). 

6. We will then formally define the first derivative; 

7. We will also look at how the derivative, apart from being a measure of slope or a 

rate of change, can also be seen as a transformation or as a measure of sensitivity 

to change; 

8. We will see a few example of equations where the first derivative is used to 

represent and describe natural phenomena; 

9. We will go through proving the first derivative of basic functions, sometimes in 

two different ways. Along the way we will go though detailed explanation (with 

numerical work and diagrams) about the basic effect of dividing by numbers which 

forever get closer to 0; 
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10. We will discuss the idea that not all functions have derivatives. In other words 

there are functions for which we cannot find the derivative/slope at certain 

points, and there are functions which do not have a derivative at all; 

11. Finally we will go through some studies on derivative and tangents. These studies 

aim to analyse the idea of derivatives and tangents in a non-standard way. The 

point of including these studies is to learn more broadly about differentiation and 

tangents; 

 

1.2 The derivative as the slope of a curve at a point 

In this section we will start the process of understanding how to find the slope of a curve. We 

will first start by reviewing how we find the slope of a straight line, and then we will see how 

this idea can be modified so that we can apply it to curves. 

 
1.2.1 Approaching the derivative from one direction 

Suppose we want to know how steep a straight line is. To do this we simply calculate how 

high up we have gone in the vertical direction from a starting point P to an end point Q 

(sometmes called the rise) and divide this distance by how far across we have gone in the 

horizontal direction from P to Q (sometimes called the run). The distances travelled in both 

cases is the difference between our end point and starting point, and the steepness calculation 

is sometime called “rise over run”. 

 
As an example consider the function y = x. The “rise” and “run” are represented in the diagram 

below by the vertical distance δy and the horizontal distance δx. We see that if we travel 

across from x = 1 to x = 5 then δx = 5 – 1 = 4. The corresponding vertical distance travelled y = 

1 to y = 5 gives δy = 5 – 1 = 4.  Hence the line has a steepness of δy/δx = 4/4 = 1 unit. 
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Slope 

��
�� = 5 − 1

5 − 1 = 1 

 

Note that it doesn’t matter where P or Q are located, or how big and small our resulting 

triangle is. The slope of the line y = x will always be 1 unit. This is illustrated in the graph and 

table below.  

 

 

Triangle  Slope 

(1) 
��
�� = −3 − (−5)

−3 − (−5) = 1 

(2) 
��
�� = −2 − (−2.5)

−2 − (−2.5) = 1 

(3) 
��
�� = 2 − 1

2 − 1 = 1 

(4) 
��
�� = 5.5 − 2.5

5.5 − 2.5 = 1 

 
 

 

Another way of interpreting the concept of rise-over-run is that, in calculating δy ÷δx, we are 

finding the rate at which the position of y changes given a change in the position of x. Terms 

like slope, gradient, and steepness are all used to mean the same thing: rate of change of y 

with respect to x. 
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However, the calculation of δy ÷δx above only applies if the path we travel from P to Q is a 

straight line. But what if this is not the case? What if our path is curved? How then do we find 

the slope of a function?  

 
For example, consider the curve below with various different locations for Q. The true path 

from P to Q is curved so our first problem is that we cannot use our standard calculation of 

vertical distance divided by horizontal distance to find the slope of the curve PQ. If we did so 

we would be finding the slope of the straight line path PQ. 

 

 

 

Our second problem is about which line PQ we are finding the slope of. In the diagram above 

there are three lines PQ, and none of their slopes are either equal to each other or equal to the 

actual slope of the curve. Worse still there are an infinite number of places we can put point Q, 

so we end up with an infinite number of slopes PQ all of them different and all of them wrong 

in terms of measuring the slope of the curve. 

 
So the question is, If we want to use δy ÷δx as our calculation for finding the slope of the curve 

where should Q be placed? Is it even possible to find a place for Q on the curve such that PQ is 

a straight line but that we are still measuring the slope of the curve and not the line PQ? 

 
Well, although the second question seems like a contradiction the answer to it is yes, and we 

will see how this is so as we go through this section. The answer to the first question can be 

addressed as follows: The function plotted is � = 0.5(� − 5)� + 3.   
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Let us look at the values of the three slopes PQ in the graph above when P is the point (6, 3.5) 

and compare these values with the real value of the slope of the curve (which, for the moment, 

we will assume we know).  

 

 

 
 

 

 
 

Real value of slope at P is 1 
 

P Q δδδδx δδδδy δδδδy ÷ δδδδx 

(6, 3.5) (10, 15.5) 4 12 3 

 

 
 

 

 
 

Real value of slope at P is 1 
 

P Q δδδδx δδδδy δδδδy ÷ δδδδx 

(6, 3.5) (8.74, 10) 2.74 7.5 2.737 

 

 
 

 

 
 

Real value of slope at P is 1 
 

P Q δδδδx δδδδy δδδδy ÷ δδδδx 

(6, 3.5) (7.75, 6) 1.25 2.5 2 
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So there seems to be a pattern here: the closer Q gets to P the closer δy ÷δx gets to the real 

value of the slope at P. This can be seen even more to be the case if we take values of Q eve 

more close to P: 

P Q δδδδ x δδδδ y δδδδ y ÷δδδδ x 

x y x y       

6 3.5 6.8 4.62 0.8 1.12 1.40000 

6 3.5 6.7 4.445 0.7 0.945 1.35000 

6 3.5 6.6 4.28 0.6 0.78 1.30000 

6 3.5 6.5 4.125 0.5 0.625 1.25000 

6 3.5 6.4 3.98 0.4 0.48 1.20000 

6 3.5 6.3 3.845 0.3 0.345 1.15000 

6 3.5 6.2 3.72 0.2 0.22 1.10000 

6 3.5 6.1 3.6050 0.1 0.105 1.05000 

6 3.5 6.01 3.51005 0.01 0.01005 1.00500 

6 3.5 6.001 3.5010005 0.001 0.001001 1.00050 

6 3.5 6.00010 3.500100005 0.0001 0.000100005 1.00005 

… … … … … … … 

Table of slopes for the secant PQ when Q gets closer to P. 

 

As we go to 9, 10, 11, 12,… decimal places so δy ÷δx approaches even more closely the value 1. 

Since the line joining P and Q is a straight line, and since δy and δx are still actual numbers 

(however small these may be), we are still justified in doing the calculation δy ÷δx as a way of 

measuring the slope of the curve. However, whereas in measuring the slope of the straight 

line y = x (or any straight line y = mx + c) our slope could be measured over an interval of any 

length along the x-axis, it so happens that our slope is now being measured over smaller and 

smaller intervals. This means that the slope is being measured closer and closer to the point P. 

We will see later that we will end up with the slope being measured at point P itself. 

 
Returing to the fact that we can still use δy ÷δx as a way of measuring the slope of the curve 

we see that when Q contnually approaches P we are zooming into a very local, micro, even 

nano, part of the curve. This zooming-in effect can generally be illustrated visually as shown 

below: 
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In this situation we see that PQ is still a straight line and the zoomed-in part of the curve from 

P to Q now looks more and more like a straight line. There is, however, one caveat which 

applies in this situation: however much we zoom in to a part of the curve, Q will never land on 

top of P, and the curved part of PQ will never theoretically become a straight line. All that the 

zooming-in process will show us is that Q gets ever closer to P, and in the process the curve 

between Q and P becomes more and more straight. 

 
The above comment is such an important concept that I will repeat it: Although the function is 

still curved the fact that it is straightening out at the micro or nano level means that the 

straight line secant from P to Q is a very close fit to this part of the curve. In theoretical terms 

the function will always remain curved however much we zoom in, but the secant line will 

represent the path of the curve better and better. Despite the fact that the secant PQ will 

never exactly line up with the curve PQ the fact that Q is forever approaching P allows us to 

more validly use the calculation δy ÷δx as a way of measuring the slope of the curve. This 

“forever zooming-in” concept is the fundamental concept of calculus. Without it there is no 

calculus. See if you can imagine this zooming in process continuing for ever without Q ever 

landing on top of P.  

 
As we continue this process of zoom-in, although P and Q remain theoretically separate we 

are actually no longer finding the slope of the secant PQ. Instead we are finding the slope of the 

curve at the point P itself. What this means is that we are finding the rate at which the curve is 

changing at one single point P, not over an interval PQ. Or, to put it another way, we are 

finding the rate of change of the curve at the instantaneous moment we arrive at P.  

 
We now come to the theoretical part of this topic, the part where the concept of δy ÷ δx as 

simply the ratio of vertical distance to horizontal distance changes to the concept dy/dx, a 

brand new object called the “derivative of y(x) with respect to x at the point P”.  
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The theoretical “thing” which changes δy ÷ δx to dy/dx is called “limit”. So instead of saying 

“as Q gets closer and closer and closer and … to P” we say 

“In the limit as Q approaches P”. 

Since we are using δx as our notation for horizontal distance, and since δx approaches 0 as Q 

approaches P, we more precisely say 

“In the limit as δx approaches 0”, 

This statement is represented symbolically as 

lim� →�  

where we then specify what it is we are taking the limit of. In this case we have 

lim� →�
��
��  . 

So the secant that went through the two points P and Q on the curve now becomes something 

called a tangent, this tangent touching the curve at one point only (namely point P). This is 

illustrated in the graph below: 

 

 

 

Visually we see that, as δx approaches 0, the sequence of secants (the dashed lines in the 

graph above) converges to the tangent at P (seen as the solid line in the graph above), this 

tangent being the slope or rate of change of the curve of y = f(x) at point P.  
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Furthermore, there is nothing special about having chosen the function � = 0.5(� − 5)� + 3 

or the point x = 6. The concept of a secant sliding up or down along the curve of a function 

towards any fixed point P(x, y) applies to any function and any point P(x, y) on the curve of 

that function. In general such an approach will give a tangent at P(x, y) (there are exceptions 

to this which we shall get to later in section 1.12). 

 
Example  

Let us say that we want to find the value of the slope of the function f(x) = x2 at the point (1, 1). 

Let us now choose a second point on the right of (1, 1), say (2, 4). What value will we get for 

the slope of f(x) when this second point approaches (1, 1)? To answer this we can set up a 

table of slopes as we did previously: 

 

P Q δδδδx f (1)    f (1+ δδδδx)    f (1+ δδδδx) – f (1)    
!(" + #$) − !(")

#$  

(1, 1) (2, 4) 1 1 4 3 3 

(1, 1) (1.5, 2.25) 0.5 1 2.25 1.25 2.5 

(1, 1) (1.1, 1.21) 0.1 1 1.21 0.21 2.1 

(1, 1) (1.01, 1.0201) 0.01 1 1.0201 0.0201 2.01 

(1, 1) 
(1.001, 

1.002001) 
0.001 1 1.002001 0.002001 2.001 

… … … … … … … 

(1, 1) 
Infinitely 

close  
to (1, 1) 

Infinitely 
close to 0 

1 
Infinitely 
close to 1 

Infinitely  
close to 0 

2 

 (limit as δx → 0) 
 

So as we approach infinitely close to the point (1, 1) the slope at point P approaches 2. The 

technical way of saying this is as follows: 

in the limit as δx → 0, the gradient at P = 2. 

 
1.2.2 A comment about tangents 

I have seen a number of animations which demonstrate the effect of Q approaching P to form 

a tangent at a given point P. These animations then go on to show the tangent sliding along the 

curve. This sliding of the tangetn is at best totally misleading and at worst false in what it is 

illustrating about the tangent.  
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The fact is that the tangent at a point is static. The tangent located at P1(x1, y1) does not move. 

There is no way we can make a tangent P1 located at (x1, y1) move to another point P2 located 

at (x2, y2) since any tangent is unique to one and only one point on the curve. The tangents at 

P1 and P2 are two separate and distinct tangents. So there is no such thing as a tangent sliding 

along the curve from P1 so that it arrives at P2 or any other location on the curve.  

 
The idea of sliding one of the points of a secant towards the other (fixed) point is simply a 

heuristic we used to explore the effects and consequences of this movement on δy ÷ δx. One 

might say that the tangent is the final resting place of the sliding secant.  

 
This implies that every point (x, y) on the curve of a function y(x) will have its own unique 

tangent at a given point, as illustrated below. Each point P1 to P5 has its own tangent 

represented by a line touching the curve at their respective red dots. 

 

 

 

Furthermore, just as the tangent represents the slope or rate of change of the curve of y = f(x) 

at a specific point x it also represents the direction in which the curve f(x) is going at that 

specific point, as illustrated below by the arrowed lines: 
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For example, if the curve represented the path of a planet orbiting the Sun, then if gravity 

were to be immediately turned off when the planet was at position P1 the planet would 

continue travelling in the straight line shown by the arrow eminating from P1. The same 

would be true if gravity were turned off at points P2, P3, P4, P5. 

 
So at any given point on the curve, the curve is travelling in a direction different to that at any 

other point on the curve. In fact, the curve is continually traveling in a different direction; it is 

continually changing its direction of travel. So when the curve is at P1 its straight line direction 

is as indicated by the red arrowed tangent at P1; when the curve is at P2 its straight line 

direction is as indicated by the red arrowed tangent at P2, etc. 

 
Also, since δy and δx shrink to an infinitely small distance the tangent itself isn’t really a line. 

Or if it is, it is a line of infinitely small length. It is only for visual reasons that we draw 

tangents as lines. 

 
1.2.3 Approaching the derivative from the other direction 

In our previous analysis of measuring the slope of a function at point P, point Q approached 

point P from the right hand side. However, one thing we will need if this idea of slope-at-a-

point is to be valid is to get the same slope if Q approaches P from the left hand side. Then we 

will have a consistent technique which will work whatever direction of travel we take along 

the curve f(x).  
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If we get a different result to the slope at P when Q approaches P from the left hand side then 

our answer will be inconsistent with our previous answer to the slope at P, and this will make 

the “slope-at-a-point” idea useless (it may not be obvious but there are functions whereby the 

slope we get when travelling to P from the left hand side is different to the slope we get when 

we get if we travel to P from the right hand side). 

 
So, given the situation depicted below let us see what happens to the sequence of secants PQ 

(dashed lines) when point Q approaches point P from the left hand side: 

 

 

 

Visually we see that, as Q gets closer and closer, getting forever closer, to P from the left hand 

side we end up with the same tangent we got when Q approached P from the right hand side. 

Phew! What this means is that we will get one and the same result for the slope of the curve at 

P irrespective of which direction we approach P. We will confirm this numerically when we go 

through an actual example in the next section. Ultimately, this has to be proved 

mathematically, and this is done at university level if-and-when we study a topic called Real 

Analysis. 

 
Example  

Continuing the example at the end of section 1.2.1 in our study of finding the slope of the 

function f(x) = x2 at the point (1, 1) the question now is, Will we get the same slope if we 

approach the point (1, 1) from the left hand side as we did when we approached that point 

from the right hand side? To test this let us choose our left hand side point to be (0, 0). The 

answer is in the table below: 
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Q P δδδδx f (1 −−−−     δδδδx)    f (1)    f (1) – f (1 −−−− δδδδx)    
!(") − !(" − #$)

#$  

(0, 0) (1, 1) 1 0 1 1 1 

(0.5, 0.25) (1, 1) 0.5 0.25 1 0.75 1.5 

(0.9, 0.81) (1, 1) 0.1 0.81 1 0.19 1.9 

(0.99, 0.9801) (1, 1) 0.01 0.9801 1 0.0199 1.99 

(0.999,  
0.998001) 

(1, 1) 0.001 0.998001 1 0.001999 1.999 

… … … … … … … 

Infinitely 
close  

to (1, 1) 
(1, 1) 

Infinitely 
close to 

0 

Infinitely 
close to 1 

1 
Infinitely  
close to 0 

2 

(limit as δx → 0) 
 

So we see that as Q approaches P from the left hand side the slope of the curve is also 2. Since 

the answer to the slope of the curve at (1, 1), in the limit as δx → 0, is the same from both the 

left hand side and the right hand side of (1, 1) we can now confirm that the slope of the curve 

f(x) = x2 at the point (1, 1) is indeed 2. 

 
Examples  

1) Let us find the slope of %(�) = 4�� + 1 at x = 2.5. to do this we will set up a table of values 

as δx approaches 2.5 from the left hand side and from the right hand side. Again, we want 

the result we get when we approach from the right hand side to be the same as the result 

we get when we approach from the left hand side. 

 
So, approaching x = 2.5 from the left hand side we have 

Q P δδδδ x f (2.5−−−− δδδδ x)    f (2.5)    f (2.5) – f (2.5 −−−− δδδδx)    
!('. () − !('. ( − #$)

#$  

(1.5, 10) (2.5, 26) 1 10 26 16 16 

(2, 17) (2.5, 26) 0.5 17 26 9 18 
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(2.4, 24.04) (2.5, 26) 0.1 24.04 26 1.96 19.6 

(2.49,  

25.8004) 
(2.5, 26) 0.01 25.8004 26 0.1996 19.96 

(2.499,  

25.980004) 
(2.5, 26) 0.001 25.980004 26 0.019996 19.996 

… … … … … … … 

Infinitely close  

to (2.5, 26) 
(2.5, 26) 

Infinitely 

close to 0 

Infinitely 

close to 26 
26 

Infinitely  

close to 0 

20 

(limit as δx → 0 from 

the left hand side  

of x = 2.5) 

 

Approaching x = 2.5 from the right hand side we have 

P Q δδδδ x f (2.5)    f (2.5+ δδδδ x)    f (2.5+ δδδδ x) – f (2.5)    
!('. ( + #$) − !('. ()

#$  

(2.5, 26) (3.5, 50) 1 26 50 24 24 

(2.5, 26) (3, 37) 0.5 26 37 11 22 

(2.5, 26) (2.6, 28.04) 0.1 26 28.04 2.04 20.4 

(2.5, 26) (2.51, 26.2004) 0.01 26 26.2004 0.2004 20.04 

(2.5, 26) 
(2.501, 

26.020004) 
0.001 26 26.020004 0.020004 20.004 

… … … … … … … 

(2.5, 26) 
Infinitely close  

to (1, 1) 

Infinitely 

close to 0 
26 

Infinitely 

close to 26 

Infinitely  

close to 0 

20 

(limit as δx → 0 from 

the right hand side) 

 

Since the slope of the secant on the left hand side and right hand side of x = 2.5 both approach 

a value of 20 (the last column of both tables above) we can now confirm that the slope of the 

curve %(�) = 4�� + 1 at the point (2.5, 26) is indeed 20. 
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There are many other limits for which we get a numerical result to a ratio when δx 

approaches some specific value (not always 0) or when x approaches infinity, some of which 

are shown in the appendix to these notes. However, it is illustrative to see two very important 

examples of thji limiting preocess. The first examples relates to the function (sin ��)/�� 

where the limit of this function (as δx approaches 0) happens to be 1, and the second example 

relates to (1 + 1/x)x where the limit of this function as x approaches infinity is 2.7818281… 

 

lim� →�
sin ��

�� = 1 
δδδδ x sin(δδδδ x) sin(δδδδ x) /δδδδ x 

    

-0.1 -0.099833416646828 0.998334166468282 

-0.01 -0.009999833334167 0.999983333416666 

-0.001 -0.000999999833333 0.999999833333342 

-0.0001 -0.000099999999833 0.999999998333333 

… … … 

0 0 1 

… … … 

0.0001 0.000099999999833 0.999999998333333 

0.001 0.000999999833333 0.999999833333342 

0.01 0.009999833334167 0.999983333416666 

0.1 0.099833416646828 0.998334166468282 
 

Table 1: The limit of (sin(δx))/δx as δx approaches 0 from the left and right hand side 

 

lim →+ ,1 + 1
�-

 
= . 

x 1/x (1 + 1/x)x 

    

1 1.000000000000000 2.000000000000000 

10 0.100000000000000 2.593742460100000 

100 0.010000000000000 2.704813829421530 

1000 0.001000000000000 2.716923932235520 

10000 0.000100000000000 2.718145926824360 

100000 0.000010000000000 2.718268237197530 

1000000 0.000001000000000 2.718280469156430 

10000000 0.000000100000000 2.718281693980370 

100000000 0.000000010000000 2.718281786395800 

… … … 

Approaching infinity Approaching 0 2.718281828459045 
 

Table 2: The limit of (1 + 1/x)x as x approaches infinity 
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In the case of the results in table  It should be clear from the above examples that, however 

small δx becomes, both δx and sin (δx) are still finite values not equal to 0. This means that we 

can divide them. It is then because of the relative sizes of these values that the ratio converges 

to a specific value. However, not all ratios exhibit this property. For example, the function 

%(�) = sin(1/�) will not converge to any value as x → 0. All it will do is bounce between +1 

and –1. So there are cases for which we get an answer as “Q forever approaches P” and some 

case for which we cannot get an answer. The mathematical study this forms part of an 

undergraduate maths degree course. 

 

1.2.4 A comment about limits 

Let us return to the concept of a point Q continually approaching point P. So important is this 

concept that it is worth mentioning again: Q never lands exactly on top of P. In other words, Q 

is never equal to P. If this were the case then δy ÷δx would give us 0÷0 which is infinity (or, 

more precisely, not a number). It is simply that Q gets closer and closer to P. In fact, Q can get 

as close as we like, or arbitrarily close, to P: Q → P, but Q ≠ P. 

 
But despite the seeming impossibility of Q forever approaching P but never landing on top of 

P we still get an answer to the slope of the curve. As we have seen with the numerical work 

previously done it is possible for δy ÷δx to give an actual numerical answer even when both 

δx and δy are extremely (infinitely?) close to zero but not actually equal to zero. This is 

because, even though small, δx and δy are still finite numbers, and as such they can be divided 

by each other. Therefore, the result is that the sequence of ratios of δy to δx we obtain as δx → 

0 is such that this sequence converges to a fixed value which happens to represent the slope of 

the curve at a particular point. 

 

1.2.5 Becoming more rigorous 

Let us now develop the algebra of δy ÷δx more precisely. This is the beginnings of getting to a 

formal mathematical definition of the derivative. Therefore, given a function � = %(�) we 

have the following: 

• The point (6, f(6)) is our current position on the function (point P in previous graphs); 

• The point (6+δx , f(6+δx) is a neighbouring point to the right hand side of (6, f(6)) on 

the function (point Q in previous graphs); 
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• f(6+δx) – f(6) is the vertical distance between f(6) and f(6+δx), also called δ f ; 

• (6 + δx) – 6 is the horizontal distance between 6 + δx  and 6, and which simplifes to δx; 

• [f(6+δx) – f(6)]/δx  = δ f/δx  is the ratio of vertical to horizontal distances. It 

represents how far up (or down) we go given how far across we have gone; 

 

 

 

From this we can set up an expression for δ f/δx to be  

�%
�� = %(6 + ��) − %(6)

(� + ��) − �  

The expression on the right hand side is known as the difference-quotient and represents the 

degree to which f(x) changes around the point f(6) due to a small change δx around the point 

x = 6.  

 
This is illustrated in the graph below. A wobble or perturbation or nudge by an amount δx 

either side of x = 6 (shown by the red bar) will cause a respective wobble, perturbation or 

nudge around f(6) (shown by the pink bar): 
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Even though δx  and δf  are small distances they are still measurable distances. The slope 

δ f/δx is therefore still just a division of two separate numbers. But as δx  approaches 0 this 

division now becomes a brand new thing, called the derivative, something which represents 

the slope of f(6) at x = 6. What δf/δx  now tell us is the degree to which f(x) changes at the 

exact moment it arrives at x = 6. This is a new type of slope and is symbolised as df/dx: 

lim� →�
%(6 + ��) − %(6)

�� = 0%
0�  at � = 6 . 

More accurately speaking df/dx represents the instantaneous rate of change of f(6) at x = 6.   

 
Conceptually we can break down the above expression as follows: 

 

Zooming in 
the slope of the secant line 

at the point x = 6 
is the derivative at f(6) 

lim� →�  %(6 + ��) − %(6)
��  = 

0%
0�  at � = 6 
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In general, for any point x = a the expression  

lim� →�%�3 � �� � %�3��  

is for curves what ��/�� is for straight lines, namely that the former allows us to calculate the 

slope of a curve at any point x = a. All we need to do is to compute the limit expression every 

time we want to find the slope of a function at a given point (notice that the value of the slope 

now only applies to a specific point x = a, not to the function as a whole as is the case when we 

are using δy/δx for straight lines).  

 
Examples  

1) Let us find the slope of %�� � 4�� � 1 at x = 2.5. The general expression for the slope of a 

function at x = 2.5 is 0%0� � lim� →� %�2.5 � �� � %�2.5��  . 
 Using the given function we have 

0%0� � lim� →� 44�2.5 � ��� � 15 � 44�2.5� � 15��  . 
 All we do now is to use algebra to expand the numerator in the expression above: 

0%0� � lim� →� 44�6.25 � 5�� � ���� � 15 � 44�6.25 � 15��  , 
 � lim� →� 20�� � 4������  , 
 � lim� →��20 � 4�� . 

 

Evaluating the last limit gives us 0%/0� � 20. This is how steep the curve is at x = 2.5. Or 

we can say that this is the rate at which %�� is changing the moment we arrive at x = 2.5. 

 

2) How steep is the curve of 7�� � �3 � �/�3 � � (where x ≠ 3) when it reaches x = 2? As 

before the general expression for the slope of a function at x = 2 is 

070� � lim� →�7�2 � �� � 7�2��  . 
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 Using the given function we have 

070� � lim� →�
3 � �2 � ��3 � �2 � �� � 3 � 23 � 2��  . 

 Doing the algebra and simplifying we get 

070�  � lim� →�
5 � ��1 � �� � 5��  , 

 � lim� →� 5 � �� � 5�1 � �����1 � ��  , 
 � lim� →� 61 � �� . 

 

Evaluating the last limit gives us 07/0� � 6. This is how steep the curve of 7�� is at x = 2. Or 

we can say that this is the rate at which 7�� is changing the moment we arrive at x = 5. 

 
As can be seen from the above examples computing this limit a lot of effort, specially if we 

have to find the slope of the curve of f(x) at many different points on the curve. However, 

there is a way around this: the limit expression can be used to find a general equation which 

represents the slope of f(x) as whole. No need to use the limit expression every time we want 

to find the slope at a single point. Just use the general equation instead. Each function will 

have its own general equation created from the limit expression. We will see how to create 

these generalised expressions in section 1.5 and section 1.11 as well as in the notes 

Differentiation II. 

 

1.3 The derivative as a functions representing the slope of the curve as a whole  

 
1.3.1 One way of understanding df/dx as a function 

We saw in the previous section that, in taking the slope of y = x, our calculation of δy ÷δx could 

be based on any triangle formed from any starting point P to any end point Q. It didn’t matter 

where we located the triangle (as illustrated in diagram (1) below), or how big or small the 

triangle was, we would always get the same result for the slope. Even making different 

triangles of different sizes would not affect our measurement of the value of the slope (as 

illustrated in diagram (2) below). 
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Diagram (1):  

Measuring the slope of y = x over intervals of the same lengths 

 

Diagram (2):  

Measuring the slope of y = x over intervals of different lengths 
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Because of this we only ever needed to form one triangle, and this could be of any size located 

anywhere along the line y = x. More specifically, we could take our δx measurement to be of 

any length anywhere along the x-axis.  

 
Now suppose that we want to see the distribution of slopes of y for different intervals along 

the x-axis. In this case we will need to take several slope measurements from different 

location and over different lengths δx. The table below shows the interval length δx used in 

diagram (2) and the associated slope over that interval.  

 

Interval 

(colour)  
…  

[– ¾, 0] 

(pink) 

[0, 1] 

(blue) 

[1, 2½] 

(red) 

[2½, 3] 

(green) 
… 

δδδδy ÷ δδδδx 1 1 1 1 1 1 

Table of values of the slope of y = x over intervals of different lengths 

 

We can plot the distribution of these slopes, across the interval over which they apply, as 

illustrated below: 

 

So, wherever we take our interval, and whatever length our interval is, we see that the slope 

of y = x over the whole interval [ –¾, 3] is δy ÷δx = 1. This slope actually applies for all 

intervals of any length over any range of x values from −∞ to +∞, so the line segments shown 

in the graph above actually form part of one continuous line which extends forever left and 

right as shown below: 
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But doesn’t this line represent a function? Yes. If we call this function S(x) where “S” stands for 

“slope”, where this function is the derivative of y, then our derivative function is S(x) = 1. 

 
We therefore have the situation where the slope δy ÷δx = 1, which was only ever measured 

using one triangle taken over one interval on the x-axis, is true when measured over all 

intervals of any length located anywhere along the x-axis. We also have the situation where the 

slope δy ÷δx = 1, which was only ever a number, happens now to be a function.  

 
All of this extends the idea of slope from being merely a number to being a function. It extends 

the idea of slope from (seemingly) being relevant only a one location (or over one interval on 

the x-axis) to being relevant to f(x) as a whole. These are important extensions to the idea of 

slope and will be needed for the understanding of the general definition of df/dx to come.  

 
1.3.2 Another way of understanding df/dx as a function 

Another way of understanding the fact that the derivative is a function is by noticing that, in 

the difference-quotient, δx acts like an independent variable and therefore the whole limit 

expression acts like a function. Let us call this difference-quotient function S(δx). Hence  

8��� � %�6 + ��) − %(6)
��  . 

For %�� � 0.5(� − 5)� + 3 we have 

8��� � 
40.5(6 − 5 + ��)� + 35 − 40.5(6 − 5)� + 35

��  , 
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 � 
0.5��� � �� � 3.5 � 3.5��  , 

 � 0.5�� � 1 . 
 
This is the equation of a straight line. What we can now do is plot this equation. Noting that 

S(δx) represents a slope, readings from the graph of S(δx) will represent the slope of the 

secant PQ of f(x) for various distances δx. This means that we can use the graph of S(δx) to 

see what happens to the slope of f(x) as δx approaches 0:  

 

Graph of the slope function S(x) 

Note that we are not taking the slope of this line, but that this line already represents the 

slope of the function f(x). Looking at the graph we can then see that as δx approaches 0 (from 

both the left hand side of 0 and the right hand of 0) S(δx) approaches 1. The white/empty 

circle at (0, 1) represents the fact that, although δx can equal 0 in the function S(δx), it cannot 

equal 0 in lim� →�4%�6 � �� � %�65/��. Nonetheless the derivative of f(x) does exist at x = 6 

and is given by  

lim� →� 8�� � lim� →� 4%�6 � �� � %�65�� � 1 . 
 

  



 

25 

 

Note that this graph is only valid for finding the slope at x = 6. We would have to draw 

separate graphs of S(δx) if we wanted to find the slope of the curve at other values of x. 

 
As mentioned earlier, the graph above can also be used to find the slope of any secant PQ on %�� � 0.5(� − 5)� + 3. For example, if δx = 2 then the slope of the secant PQ is 2. If δx = –2 

then the slope of the secant PQ is 0 (i.e. PQ forms a horizontal line. Question: where would Q 

have to be on the graph for it to be level with P?) 

 
Another example 

Consider wanting to find the function which represents the derivative of f(x) = x3. We want to 

see the distribution of slopes of f(x) for different intervals along the x-axis. In this case we will 

need to take several slope measurements over different interval lengths δx.  

 
Let us start by taking slope measurements at intervals of δx = 0.75. Doing so we obtain the 

following set of triangles from which we can calculate the slope of the secants: 

 

 

The calculation of the slopes according to 4%�� � �� � %��5/�� at different values of x, with 

δx = 0.75, can be seen in the table below:  
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x =  -1.5 -0.75 0 0.75 1.5 

[f(x + δx) - f(x)] / δx = 3.9375 0.5625 0.5625 3.9375 10.6875 

Slope data for f (x) = x3 when δx = 0.75 

 

What this data represents is the distribution of the slopes of f(x) = x3. The shape of this 

distribution should form some kind of coherent and recognisable pattern. To see whether this 

is so we can plot the above data, and this is shown as the red points in the graph below: 

 

 

Distribution of slopes of f (x) = x3 when δx = 0.75 

 

This sequence of data points does not look like any recognisable pattern which could be 

represented by a function. This is because δx = 0.75 is a far too large an interval to take for an 

accurate representation of the derivative of f(x), and the sequence data points above do not 

suggest what function this derivative could be. We will therefore have to take a smaller 

interval.  

 

So, taking δx = 0.5 (seen by the red and blue bars on the x-axis) we obtain the following set of 

triangles from which we can calculate the slope of the secants: 
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This gives the following slope data and graphs: 

 

x =  -1.5 -1 -0.5 0 0.5 1 1.5 

f(x + δx) - f(x) 

            δx 
4.75 1.75 0.25 0.25 1.75 4.75 9.25 

Slope data for f (x) = x3 when δx = 0.5 

 

 

  

Distribution of slopes of f (x) = x3 when δx = 0.5 
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It looks like we might be getting somewhere. The sequence of calculations of [f(x + δx) – 

f(x)]/δx, when δx = 0.5, has produced a set of data that now seem to follow a coherent 

pattern. Reducing δx further will allow us to  see if this pattern continues. 

 
So, taking δx = 0.5 (seen by the red and blue bars on the x-axis) we obtain the following set of 

triangles from which we can calculate the slope of the secants: 

 

 

This gives the following slope data and graphs: 

 

x =  -1.5 -1.4 … 0 … 1.4 1.5 

f(x + δx) - f(x) 

           δx 
6.31 5.47 … 0.01 … 6.31 7.21 

Slope data for f (x) = x3 when δx = 0.1 
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Distribution of slopes of f (x) = x3 when δx = 0.1 

 
Now this looks more promising. The shorter interval of δx = 0.1 shows that the set of data 

seems to give an x2 type of pattern. This could be a coincidence so let reduce the interval δx to  

δx = 0.05. For practical reasons I will not show the districution of triangles along the curve of 

f(x) = x3 only the table of data and the distribution of slopes, the result of this are shown on 

the next page. 
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δx =  0.05                

x =  -1.5 -1.45 -1.4 -1.35 … -0.1 -0.05 0 0.05 0.1 … 1.3 1.35 1.4 1.45 1.5 

f(x + δx) - f(x) 

δx 
6.5275 6.0925 5.6725 5.2675 … 0.0175 0.0025 0.0025 0.0175 0.0475 … 5.2675 5.6725 6.0925 6.5275 6.9775 

Slope data for f (x) = x3 when δx = 0.05 

 

 

 

 

Distribution of slopes of f (x) = x3 when δx = 0.05 
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The graph above definitely resembles an x2 type of graph. It could resemble an x4 type of graph 

or a graph of another even power of x, but this is unlikely since these graphs would have 

appeared much more tightly packed towards the y-axis. In any case we can confirm our 

assumption by testing various functions. Ultimately we see that the set of data most closely 

resembles the function 3x2, as illsutrated by the solid curve in the graph below:  

 

 

 
In fact, as δx approaches 0 the set of slope data would take the exact same path as the function 

3x2, so our derivative function is S(x) = 3x2. 

 

So, the slope graph, which started off as a collection of data with no coherent pattern of data 

points has ended up looking like a coherent pattern of data points satisfying the function S(x) 

= 3x2. This happened because of a continual shortening of the interval δx over which we built 

the triangles we used to calculate our slope. This continual interval shortening therefore 

seems to be the way forward when it comes to getting the correct function which represents 

the derivative of y = f(x). We are now in a position to formally develop the full and proper 

version of this approach to finding the derivative of a function. This we will do in the next 

section. 
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To finish this section we can repeat the activity of plotting the difference-quotient function 

S(δx), for a given value of x, by treating S(δx) as a function of δx. Hence, if we want to find the 

slope of f(x) = x3 at x = –1 we have 

 

8��� � 
%��1 � �� � %��1��  , 

 � 
��1 � ��9 � ��19��  , 

 � 
���9 � 3���� � 3�� � 1 � ��1��  , 

 � ���� � 3�� � 3 . 
This is a quadratic in δx. Plotting this quadratic against δx we get the following graph: 

 

 

Graph of the slope function S(x) 

As before, note that we are not taking the slope of this curve, but that this curve already 

represents the slope of the function f(x) = x3. Looking at the graph we can then see that as δx 

approaches 0 (from both the left hand side of 0 and the right hand of 0) S(δx) approaches 3. 

This is what we expect since if we put x = –1 into S(x) = 3x2 we get S(x) = 3.  
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The white/empty circle at (0, 3) represents the fact that, although δx can equal 0 in the 

function S(δx), it cannot equal 0 in lim� →�4%(−1 + ��) − %(−1)5/��. Nonetheless the derivative 

of f(x) does exist at x = –1 and is given by  

lim� →� 8(�) = lim� →�
4%(−1 + ��) − %(−1)5

�� = 3 . 

Note that this graph is only valid for finding the slope at x = –1. We would have to draw 

separate graphs of S(δx) if we wanted to find the slope of the curve at other values of x. 

 
1.4 On the formal definition of the first derivative 

We are now in a position to more formally define the expression for the derivative of y= f(x). 

Therefore, consider a point P(x, y) of the curve of a function y = f (x). Let P be fixed and let 

another point Q(x + δx, y + δy) be located on the right hand side of P as shown below: 

 

The slope of secant PQ can then be expressed as  

�%�� � %�� � �� � %���� � �� � � � %�� � �� � %����   , 

where the right hand side is known as the difference quotient. Now let Q continually approach 

P. Then provided Q ≠ P (i.e. provided δx ≠ 0) the secant becomes a tangent, and we have the 

slope of the curve at point P, as illustrated below: 
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The definition of the first derivative df/dx of a function f(x) is then given by the limit as δx → 0 

of the difference quotient: 

 
0%0� � lim� →�

%(� + ��) − %(�)
��  (1) 

 

It is the concept of the limit as δx → 0 which makes the derivative (and calculus) what it is. If 

there was no limit we would simply be dividing a very small, but finite, number δ f  by another 

very small, but finite, number δx . 

 
However, because we are applying the limit these two values become forever smaller and 

smaller until the end of time. Although it looks like we are going to end up with an answer of 

0/0 we actually end up with a value based on a brand new way of thinking, namely that of 

“taking limits”, i.e. the concept of forever approaching a specified number (say, 0) without 

actually ever reaching it. This continual approach to 0 can be illustrated by the sequence of 

diagrams below: 
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Another way of describing the concept of δx → 0 without ever becoming 0 is by saying that δx 

can get arbitrarilly close to 0. What does “arbitrarily close” mean? Well, think of a number that 

is as close to 0 as possible. I can always think of a number closer than this simply by dividing 

your number by 2. Then, you can get closer still by dividing my number by 2 again, etc. This is 

what it means for us to be able to choose a number δx which is arbitrarilly close to 0 without 

actually being 0. 

 

This limiting process means we actually end up with a value to df/dx which represents the 

slope, and more generally, the instantaneous rate of change of f(x) with respect to x. What 

df/dx also represents is a brand new mathematical object called a derivative, which is a 

function representing the instantaneous rate of change of f(x) at any point x. 

 
Returning to the above definition of the derivative we might think that equation (1) applies 

only when Q approaches P from the right hand side (diagram 1 below). However, equation (1) 

is also valid when Q approaches P from the left hand side. To see why let X = x + δx be our 

point P (diagram 2 below). Then our point Q is given by X – δx = x, which lies on the left hand 

side of P. If we now substitute this into equation (1) to get lim� →�4%(;) − %(; − ��)5/��, where 

the  expression %�; � %�; � �� is simply the vertical distance over horizontal distance as 

seen from the left hand side of P. What this means is that this last expression is automatially 

implied by equation (1) when Q is on the left hand side of P. 
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Therefore in summary we have  

 
 %�� � �� � %���� � �� � �  

 

 
 

Diagram 1: Q approaches P from the right hand side 

 

 
 %�; � %�; � ��; � �; � ��  

 

 
 

Diagram 2: Q approaches P from the left hand side 

 
Therefore, approaching P from either direction leads to the same result: 

 

 

 0%0� � lim� →�
%(� + ��) − %(�)

��  is the same as 
0%0� � lim� →�

%(�) − %(� − ��)
��  
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Below is a diagram I got off the internet (https://betterexplained.com/calculus/lesson-10/) 

which may be useful in interpreting expression (1). Here they have used the notation %<�� for 

the derivative which is another way of writing df/dx. 

 

 

At this stage it is important to understand that df/dx is not a division. We are not doing 0% =0�. Rather, df/dx is an operation (just like +, –, × and ÷ are operations). In this case the 

operation is that of differentation, and the operator is 00� . 
 
When we get to the differentiation topic of related rates, as well as the topic of integration, we 

will see that df and dx can be considered separately, that we will be able to divide these, and 

that df ÷ dx will have its own meaning. In this case “df” and “dx” are called “differential 

elements” and represent infinitely small distances. However, at this stage in our learning we 

will interpret df/dx as the operator shown above. 

 
1.5 The derivative of xn from 1st principles 

We are now in a position to find the general expression for the derivative of a number of basic 

functions, the first of which is %�� � �> where 
 ∈ ℝ. O starting point for doing this will 

always be the definition of the derivative given as equation (1). Finding derivatives based on 

this expression is called differentiating from 1st principles.  

 

For the reason that we haven’t yet covered enough on the topic of differentiation we will first 

find the derivative of %�� � �> only for the case where 
 ∈ ℕ (i.e. n is a positive integer only). 

When we ave covered the necessary extra differentiation theory (in the Differentiation II 

notes) we will see how we can find the derivative when n is a real number.    
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So, applying the definition of the derivative to x n we get 

0%0� � lim� →� �� � ��> � �>��  . 
The first question is, Can we evaluate the limit? Is there an answer to evaluating the limit as it 

stands? If there is then we have the answer to the derivative. Usually, however, we will not be 

able to evaluate the limit as it is given here (because it leads to a “0/0” situation which is not a 

valid result). 

 
In the case above we cannot evaluate the limit as it stabds so we have to find a way of 

transforming the expresion into something whereby we can evaluate the limit. This is usually 

done by using algebra in a judicious way so as to get a limit which we can evaluate.  

 
So, one of the more obvious things we can do is ot use the binomial theorem. To expand th 

term �� � ��>. We don’t know if this will help us get to a point hwere we can evaluate the 

limit, but we have to try something. Doing this gives us  

0%0� � lim� →� 1�� B�> � 
. ��. �>CD � 
�
 � 12! �����>C� �⋯� 
���>CD� � ���> � �>G . 
Cancelling the first and last terms, and dividing the rest by δx we get 

0%0� � lim� →�H
. �>CD � 
�
 � 12! ��. �>C� �⋯� 
���>C�� � ���>CDI . 
Note that since the first term in the limit is independent of δx we can take it out of the limit. 

Hence we have  

 
0%0� � 
. �>CD � lim� →�H
�
 � 12! ��. �>C� �⋯� 
���>C�� � ���>CDI . (2) 

Again we ask, Can we evaluate the limit? In this case we can. So, as �� → 0 all terms inside the 

bracket become zero, and we are left with  

 
0%0� � 
. �>CD (3) 

Hence the operation of the first derivative is to transform %�� � �>, where 
 ∈ ℕ, into 0%/0� � 
. �>CD. In other words,  

If %�� � �  then 
0%0� � 1. �DCD � 1. �� � 1 
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If %�� � ��  then 
0%0� � 2. ��CD = 2� 

If %�� � �9  then 
0%0� � 3. �9CD = 3�� 

If %�� � �J  then 
0%0� � 4. �JCD = 4�9 

 

… etc. The mechanics of the process of differentiation is therefore to bring the power down as 

a multiple, and then reduce the power by 1.  

 
But what happens if n is a fraction such as ½? What happens if n is negative? And finally, what 

happens if n is a real number such as π or √2 ? What, then, is the derivative of %�� � �L or %�� � �√� ? Since 
MM  is a brand new operation we can’t assume that expression (3) is also 

true when n is a real number. To show that the above formula works for all real values of n 

(i.e. 
 ∈ ℝ) we will need to learn some rules of differentiation which we will get to in the 

Differentiation II notes.  

 
There is, now, an important point to note: it might seem that in going from (2) to (3) we have 

simply put δx = 0. If this is true then what is the point of the limit idea? Well, the truth is that 

we do NOT do δx = 0. We do do δx → 0. It just so happens that we get the same answer as if we 

had done δx = 0. But this is just a coincidence. More advanced maths would be needed to 

prove that (2) does reduce to (3) as δx → 0, but we can get an idea that this is so by looking at 

a table of values as we let δx → 0 in (2): 

 

δδδδx δδδδ f/δδδδx 

0.1 

. �>CD + 
(
 − 1)

2! (0.1). �>C� + 
(
 − 1)(
 − 2)
3! (0.1)�. �>C9 + …� �0.1)>CD 

0.01 

. �>CD + 
(
 − 1)

2! (0.01). �>C� + 
(
 − 1)(
 − 2)
3! (0.01)�. �>C9 + …� �0.01)>CD 
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0.001 


. �>CD � 
�
 � 12! �0.001. �>C� � 
�
 � 1�
 � 23! �0.001�. �>C9 � 

… + (0.001>CD 

1×10−4 

. �>CD � 
�
 � 12! �1 O 10CJ. �>C� � 
�
 � 1�
 � 23! �1 O 10CJ�. �>C9 � 

… + (1 O 10CJ>CD 

1×10−5 

. �>CD � 
�
 � 12! �1 O 10CP. �>C� � 
�
 � 1�
 � 23! �1 O 10CP�. �>C9 � 

… + (1 O 10CP>CD 

… … 

1×10−1000 

. �>CD � 
�
 � 12! �1 O 10CD���. �>C� � 
�
 � 1�
 � 23! �1 O 10CD����. �>C9 

… + (1 O 10CD���>CD 

… … 

 

Therefore as δx → 0 we will be left with only the term 
. �>CD. The results above may seem 

obvious but we shall see later that there is nothing obvious about evaluating limits when δx → 

0. 

 

Examples 

1) Despite my earlier comment about us having to wait until the Differentiation II notes 

before we can show the derivative formula (3) works for all real n and not just for integer 

n, we can still give an example of the derivative for fractional powers. 

 
Let us therefore consider finding the derivative of if %�� � �D/�. From 1st principles we 

have   0%0� � lim� →�H�� � ��D/� � �D/� �� I . 
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 Since the powers in each term of the numerator are not integers we can’t used the 

binomial theorem to expand these (if you know about Taylor series then we could use 

this, but we won’t go there at this point). 

 
 So what we do is to use an algebraic trick which will convert these powers into integers. 

Specificially we are going to use a variation on the idea of the difference of two squares 

which says that �3 � Q�3 � Q � 3� � Q�. So, the numerator of our fraction above is the 

same type of object as “a – b”. what we want is to introduce an “a + b” term, ans we do this 

as follows:  0%0� � lim� →�H�� � ��D/� � �D/� �� . �� � ��D/� � �D/� �� � ��D/� � �D/� I . 
 What we have done here is to multiply our original fraction by another fraction which 

happens to equal 1. But this other fraction is made in such a way as to allows us to get the �3 � Q�3 � Q structure we want in the numerator. 

  
 Multiplying out the top and bottom of this last expression we get 

0%0� � lim� →�H �� � �� � ���4�� � ��D/� � �D/� 5I . 
 Doing this has significantly reduced the level of difficulty of the numerator. You might 

think that we have only increased the level of difficulty in the denominator but, as we 

shall in what follows, we will be able to handle this. 

 
 The above expression simplifies to  0%0� � lim� →� , 1�� � ��D/� � �D/� - . 
 Since δx approaches 0 the term �� � ��D/� approaches �D/�, hence we end up with 

0%0� � 12 1�D/� . 
 

2) Let %�� � �/�� � 1. Then from 1st principles we have  

0%0� � lim� →�R
�� � ��4�� � �� � 15 � �� � 1�� S . 
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 Cross multiplying we get 

0%0� � lim� →�H�� � 1�� � �� � �4�� � �� � 15���� � 14�� � �� � 15 I . 
 We could expand everything in the numerator and simplify as necessary, but a quicker 

way is to notice that there is an x(x + 1) terms in both parts of the numerator, viz 

0%0� � lim� →�H��� � 1 � ���� � 1 � �4�� � 1 � ��5���� � 14�� � �� � 15 I . 
 Because of the minus sign these two terms cancel and we are left with 

0%0� � lim� →�H ���� � 1 � �. ������ � 14�� � 1 � ��5I , 
where I have regrouped terms in the squared bracket of the denominator for visual effect. 

Simplifying further we get 0%0� � lim� →� , 1�� � 14�� � 1 � ��5- . 
 Since δx approaches 0 the term 4�� � 1 � ��5 approaches �� � 1, hence we end up with 

0%0� � 1�� � 1� . 
 

Example 2) was one of finding the derivative of a fraction. In the Differentiation II notes we 

will find general formulae for finding the derivatives of fractions which will make it much 

easier for us to perform the operation of differentiation on fractions.  

 

1.6 The derivative as a transformation from position to slope 

In previous sections we saw that df/dx could be considered as the gradient or slope of a curve. 

However, there is another way of interpreting the derivative. In order to see this let us first 

understand what a functions is and does.  

 
The usual way of thinking about functions is as a formula, usually written as y = f(x). We put a 

number x into our formula, and it gives us the answer y. We might therefore say that the 

formula transforms a value x value into a value y. 
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In the practical context of geometry, and geometric measurement, y = f(x) is considered to 

specify a vertical position/distance, which might be seen as height or depth, above or below 

the x-axis for a given horizontal position/distance x (in the more abstract terms of advanced 

maths we would say that f  transforms a value x into a value f(x) according to a mapping given 

by f). 

 

This idea of transformation applies to all functions, and since the derivative is a function it 

also applies to df/dx. So, given a function y = f(x) (which itself is a transformation of x into y), 

df/dx is which represents the rate of change of f(x) at a point x. 

 
Since functions are objects which specify position (f(x) as a vertical distance for a given 

horizontal distance x), and derivatives are objects which specify slope (df/dx as a slope of f(x) 

at a given position x), d.../dx can be interpreted as an operation which transforms a “position 

function” f(x) into a “slope function” df/dx. This is represented diagrammatically below: 

x

f(x)

x

f '(x)

transforms f to
d

dx

df

dx

 

We have already seen an example of such transformations in section 1.3.1 and 1.3.2. In this 

latter section we saw that, when where we were trying to find the derivative of f(x) = x3, we 

ended up with the derivative function to be df/dx = 3x2. This can be interpreted as follows: 

 
The operation of differention f(x) = x3 into df/dx = 3x2 

has the effect of transforming a position function into a slope function. 
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In summary, the derivative can be intrerpreted as follows: 

 Geometric concept Algebraic concept 

df/dx 

Tangent 

df/dx represents the slope  

or gradient of f(x) 

at one point (x1, y1) on the curve. 

 

Function 

df/dx is a general expression representing the 

rate of change of f(x) at a point (x, y) anywhere 

on the curve. 

 

 

 

Transformation  

df/dx represents the transformation of  

a position function (i.e. f(x))  

to a rate of change function (i.e. df/dx). 
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1.7 The derivative as a measure of sensitivity 

One of the usual ways of thinking about the derivative is as a slope. For a given function f(x) 

we can find out how steep it is at any given point x. Another way of interpreting the derivative 

is as a measure of the sensitivity of f(x) at a point x, in other words, how sensitive f(x) is when 

we nudge x by a small amount. This section is aimed at explaining this conception of the 

derivative. 

 
Before we get to this we first need to develop a new understanding of what functions do. The 

usual way of thinking about functions is as a formula which takes a number x and gives us an 

answer y according to a formula given by f(x). Mathematically we write y = f(x). Geometrically 

speaking we can say that for any horizontal distance x, the function f(x) represents a vertical 

distance, or height, above or below x, as illustrate below for some function f(x): 

 

 

A function seen geometrically as a measure of height 

The question now is, How quickly or slowly does f(x) react when there is a slight perturbation 

or nudge in the input x? Does f(x) react wildly or does it react mildly to these nudges in x? 

Does f(x) even react at all to a nudge in x? This is a question about the sensitivity of f(x) to 

changes in x, and ultimately to infinitely small changes in x. 

 
As an example consider the function %�� � �. Let us now take any two points �D and �� on 

the x-axis and nudge these two values ever so slightly, by the same amount, either side of �D 

and ��. The set up for this scenario is shown in the diagram below where the pink rectangles 

represent the range of nudging around the given points: 
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How will %�� react? Will f (x) be nudged to the same extent? Will it be nudged to a greater or 

lesser extent, and if so by how much greater or less? Well, it can be seen from the diagram 

that, since the pink rectangles on the y-axis are of the same length as the pink rectangles on 

the x-axis, any nudging effect on �D and �� will cause %�� to react to exactly the same extent. 

Therefore, the nudging of %�� compared to the nudging of x (i.e. the rate nudging) can be said 

to be 1 at both  �D and ��.  

 
Comparing the nudging on %�� due to the nudging on x at both  �D and �� gives a measure of 

sensitivity of %�� at �D and ��, and is another way of viewing the concept of the derivative of %��. Since %�� experiences the same extent of nudging as x does over the whole of %��, the 

sensitivity (/derivative) of %�� is 1 for the whole of %��.  
 
Representing visually the mathematical ratio of the vertical nudge to the horizontal nudge we 

could say that  

 

 
What about if our function is a constant? In other words what if we have the situation below? 
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Here we see that whatever nudging occurs around �D and �� the function %�� does not react 

away from its %��D or %(��) values. No amount of nudging, big or small, on the x values will 

knock %�� off its perch. Therefore the nudging result on %�� compared to nudging effect due 

to x is 0 at both  �D and ��. The derivative (which is the ratio of the %�� nudges to the x 

nudges) is therefore 0.  

 
Representing visually the mathematical ratio of the vertical nudge to the horizontal nudge we 

could say that  

 

 

In general, %�� will have a curved path. Nudges of specific amounts around given values �D, ��, and �9 will cause %�� to undergo a change in height. This can be seen in the diagram 

below when the black dot represents the height of the function for a given value x1, and the 

red dots represents the changed heights of the function due to the amount by which x1 has 

been nudged left and right: 

 

Now, x1 has been nudge by the same amount left and right. But the change in height as the 

function moves from left red dot to black dot is not the same as the change in height from the 

black dot to the right red dot. As the height increase from left red dot to black dot to right red 

dot, so the change in height decreases. This implies that there is a rate of change of height due 

to the (equal amount of) nudging around x. 
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This nudging effect can be seen more easily if we draw little rectangles on the x-axis and y-axis 

as shown in the three diagrams below. The ratio of the range of nudge of f(x) to the range of 

nudge of x is the slope of the secant (illustrated by the solid red secant lines in the diagram). 

 

 

 

f (x) reacts to a medium extent for a given nudge around x1 

 

 

 

 

f (x) reacts to a small extent for a given nudge around x2 
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f (x) reacts to a large extent for a given nudge around x3 

 

The fundamental nature of differentiation is such that, in order to study its effect, we need to 

consider the behaviour of points infinitely close to a given point x. We therefore need to 

consider the ratio of the nudged reaction of f(x) due to nudging x when our pink rectangles 

become even more narrow than the regions depicted in the diagrams above.  

 
So, as the nudging region around �D, ��, and �9 becomes more and more narrow, forever 

becoming more narrow, so the nudged region around points %��D, %(��), and %��9 also 

shrinks ever more. The ratio of these ever shrinking regions will lead us from a secant to a 

tangent, and towards the slope of f(x) at �D, ��, and �9 as being a measure of the sensitivity of 

f(x) at �D, ��, and �9.  

 
In general, we can therefore interpret the derivative as describing the degree of sensitivity of 

a function f(x) to infinitessimal nudge δx around the input point x. The greater the sensitivity 

of f(x) to nudges around a given point x the steeper the slope of f(x) at that point x.  
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1.8 The derivative as a measure of distribution 

In previous sections we have looked at the derivative from a geometric perspective. Here we 

will look at the derivative from a numerical perspective, and see how it can be interpreted as 

the rate at which the distribution of points changes as we approach a given value y =f(x).  

 

1.8.1 Functions as distributions of values, and how these distributions relate to rates of change 

Before we move onto studying rates of change of disgtributions we need to re-interpret how 

functions work, and what is is they really do. Therefore, consider the number line. The values 

on this line increase forever towards the right hand side and decrease forever towards the left 

hand side. What we will look at in this section applies to all real numbers (integers, rational 

and irrational numbers), but to make things easier let us look only at integer values: 

 

Diagram 1: The distribution of integers on the number line 

 

This line shows us how the integers are distributed. In this case, integers can be seen to be 

evenly distributed and spaced 1 unit apart from each other. This number line is what is 

referred to as the x-axis on a graph. 

 
One way of conceiving of functions is that  

functions transform the distribution of values on the number line. 

For example, the function %�� � �� takes each value from the number line and transforms it 

into its squared number. Let us take –5 to 5 as a representative range, as seen by the blue dots 

in the diagram below: 

 

 

Diagram 2: Dots showing a sample of values on the number line 
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When we square these values they get transformed into those shown by the red dots in the 

“transformation” diagram below:  

 

Diagram 3: The transformation of x values to x2 values 

 
The particular pattern shown by the distribution of red dots represents the squaring effect. 

Since the values of x have changed from –5, –4, –3 …, 0, … 3, 4, 5 (and beyond) to the values of 

x2 as 25, 16, 9, …, 0, … 9, 16, 25 (and beyond) there must be a rate at which these x2 values 

have changed compared to the x value. This has to be the case since the x2 values are no longer 

evenly distributed when compared to the x values but get further and further away from each 

other when x < 1 and x > 1. 

 
Let us now return to the basic untransformed number line. The evenness of the distribution of 

values on this line means that any one integer on this line is the same distance away from its 

neighbour as any other integer. Let us now see what happens when we compare this 

distribution with other distributions given by some transformation f(x).  

  
The first transformation we will look at is f(x) = 2. Comparing the distribution of integers of 

the x-axis with the “distribution” of values of f(x) = 2 we see that when x = 0, f(x) = 2, when x = 

1, f(x) = 2, when x = 3, f(x) = 2, etc. So there is no distribution in f(x) values since all values of x 

lead to the single non-distributed value 2. This is represented by the diagram below:  

 

Diagram 4: All distributed values of x lead to the non-distributed value f(x) = 2 

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

f(x) = 2
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Since f(x) has no distribution the rate of change of f(x) compared to the values of x is 0. 

Another way of saying this is that f(x) is not keeping up at all with x. It is this which allows us 

to say that the derivative of f(x) with respect to x is 0. 

 
The second transformation we will look at is f(x) = x. Comparing the distribution of integers 

on the x-axis with the distribution of values of f(x) = x we see that when x = 0, f(x) = 0, when x 

= 1, f(x) = 1, when x = 3, f(x) = 3, etc. So there is a distribution in the values of f(x) and this 

distribution is exactly the same as that of the untransformed x values. This is represented by 

the diagram below:  

 

Diagram 5: All distributed values of x lead to the distributed value f(x) = x 

Since the distribution of f(x) = x is exactly the same as that of x there is no change in the way 

the points of f(x) = x are “internally” distributed compared to those of the x-axis. In other 

words, a point c whose neighbouring points are a certain distance away from c on the x-axis 

will have neighbouring points exactly the same distance away from c on the f(x) axis. This can 

be interpreted as meaning that f(x) is keeping up at exactly the same pace as x. It is this which 

allows us to say that the derivative of f(x) with respect to x is 1. 

 
The third transformation we will look at is f(x) = x + 2. The only thing that has happened here 

compared to f(x) = x is that every point of this former transformation has been shifted equally 

to the right by 2 points, as can be seen in the diagram below. 

 
As can be seen, there is no change in the way the points of f(x) = x + 2 are “internally” 

distributed compared to the distribution of values on the x-axis. In other words, a point c 

whose neighbouring points are a certain distance away from c on the x-axis will have 

neighbouring points exactly the same distance away from c on the f(x) axis, save for the fact 

that c and it neighbouring point have all shifted to the right by 2 units.  
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x

f(x) = x

f(x) = x + 2

-5 -4 -3 -1 0 1-2 2 3 4 5

-3 -1 0 1-2 2 3 4 5 6 7

 

Diagram 6: All distributed values of x lead to the distributed value f(x) = x + 2 

 
So the function f(x) = x + 2 is distributed in the same way as f(x) = x. The transformed 

distribution f(x) will still be keeping with the untransformed distribution x at exactly the 

same pace, hence the derivative of f(x) = x + 2 with respect to x is also 1. 

 
What if our transformation is now f(x) = 2x as shown in the diagram below? Comparing the 

distribution of integers on the x-axis with the distribution of values of f(x) = 2x we see that 

when x = 0, f(x) = 0, when x = 1, f(x) = 2, when x = 2, f(x) = 4, when x = 3, f(x) = 6, etc. What 

this means is that not only have the x values shifted rightward and leftward (which we have 

seen by the previous example does not, in and of itself, affect the derivative) but the “internal” 

distribution of f(x) = 2x values (i.e. the distribution of any two neighbouring values with 

respect to each other) compared to the “internal” distribution of x values has changed. 

 

x

 
Diagram 7: All distributed values of x lead to the distributed value f(x) = 2x  

 

The change in the spreading out or distribution of f(x) = 2x values happens at twice the rate of 

that of the x values. It also happens to be doing this consistently over the whole range of 2x 

values. So the pace of the transformed distribution f(x) outstrips the pace of the 

untransformed distribution x by a factor of 2 It is this which allows us to say that the 

derivative of f(x) with respect to x is 2.  
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So the concept of the derivative is seen to be the result of comparing the distribution of values 

given by a transformation f(x) with the distribution of values of the x-axis. Although the x-axis 

values have a distribution, and therefore a rate of change, the x-axis is always taken as the 

reference distribution with which all other distributions (i.e. functions f(x)) are compared. 

And it is this comparison of the transformed distributions to the untransformed distribution 

which leads to the concept of the derivative.  

 
1.8.2 The rate of change of distribution in more detail 

The rate of change of distribution of transformed values was fairly straightforward to see for 

the previous examples because all values of f(x) = x or f (x) = 2x are evenly distributed, 

meaning that any one value is equally distant from its neighbours as any other value. 

Therefore, every single point in the distribution is running at the same pace as every other 

point in the distribution. Hence, the rate of change of f(x) is exactly the same at every single 

point along the distribution. 

 
But what if our transformation is f(x) = x2  as shown in the diagram below? Here we have that 

(amongst other values) when x = 0, f(x) = 0, when x = 1, f(x) = 1, when x = 2, f(x) = 4, when x = 

3, f(x) = 9, etc. So the distribution of x2 values is not evenly spaced out compared to that of the 

standard x-axis values. In fact, when x > 0 values of x2 get further and further away from their 

preceding values as x increases. 

x

 

Diagram 8: All distributed values of x lead to the distributed value f(x) = x2 

 
How then do we analyse the rate of change of the distribution given by f(x)? The question now 

is, At what rate are the x2 values changing? In order to answer this we will have to look more 

closely at what is happening to the distribution of points around a specific value of x2 

compared to the distribution of points around the respective value of x.  
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Specifically, taking (1, 1) as the point of study, we will look at how different the pace of points 

around x2 = 1 is, as we approach x2 = 1, compared to the pace of points around x = 1 as we 

approach x = 1? More exactly, we will want to know the rate at which the x2 values are 

changing around, or at, x2 = 1 compared to the x values around, or at, x = 1? 

 
Therefore, consider %�� � �� for some values in [0.7, 1.3], as shown in the table below: 

 

x 0.7 0.8 0.9 0.95 0.99 1 1.01 1.05 1.1 1.2 1.3 

x2 0.49 0.64 0.81 0.9025 0.9801 1 1.0201 1.1025 1.21 1.44 1.69 

 

The transformation diagram for this is as below: 

x

 

 
Here, for clarity, I have left out the values x = 0.95, 0.99, 1.01, and 1.05, as well as x2 = 0.9025, 

0.9801, 1.0201, and 1.1025 (it should be fairly straightforward to identify these in the 

diagram above). 

 
The question now is, At what rate are the x2 values changing around, or at, x2 = 1 compared to 

the x values around, or at, x = 1? To answer this, notice that x = 0.7 and x = 1.3 are the same 

distance of 0.3 away from x = 1. However, the transformed version of these x values, i.e. x2 = 

0.49 and x2 = 1.69, are not the same distance away from x2 = 1. But as x approaches 1, and as x2 

approaches 1, values of x2 become closer and closer to twice the distance away from x2 = 1 

compared to the distance of values away from x = 1.  

 
This can be seen by the table shown below for the interval [0.7, 1.3], with the two previous 

examples being highlighted (blank cells to be explained shortly). In this table I have written |� � 1| to represent the left and right distances of x values away from x = 1, and |�� � 1| to 

represent left and right distances of x2 values away from x2 = 1: 
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x 0.7 0.8 0.9 0.95 0.99 1 1.01 1.05 1.1 1.2 1.3 

|� � 1| 0.3 0.2 0.1 0.05 0.01  0.01 0.05 0.1 0.2 0.3 

|�� � 1| 0.51 0.36 0.19 0.0975 0.0199  0.0201 0.1025 0.21 0.44 0.69 

x2 0.49 0.64 0.81 0.9025 0.9801 1 1.0201 1.1025 1.21 1.44 1.69 

 

Referring to the table above we see that on the left hand side of (1, 1), 0.51 ≉ 2×0.3, but as we 

get closer to the value (1, 1), 0.0199 ≈ 2×0.01. The same thing happens on the right hand side 

of (1, 1), so that as we get closer to the value (1, 1) the distance |�� � 1| gets closer to two 

times the distance |� � 1|: 0.62 ≉ 2×0.3, but 0.0201 ≈ 2×0.01.  

 
This idea can also be represented visually, for all left and right distances, as shown below:  

 

0.7       1

0.49       1

0.8       1

0.64       1

1       1.3

1       1.69

1       1.2

1       1.44

0.9       1

0.81       1

1       1.1

1       1.21

0.95       1

0.9025       1

1       1.05

1       1.1025

(1)

(2)

(3)

(4)

 

 
In the diagram above, from both the left hand side and the right hand side, the blue lines are 

always of the same length for any given distance away from x = 1. But the red lines do not 

have the same length for any given distance away from x2 = 1.  
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The left and right red lines in (1) are significantly different in length, whereas the left and 

right red line in (4) are much closer in length, and much closer to being twice the length of the 

blue lines in (4). This “twice” is the derivative of f(x) at x = 1.  

 
What this all means in visual terms is that as the blue lines of the previous diagram get shorter 

and shorter so the red lines get closer and closer to being twice the length of these blue lines 

as we approach x = 1. This is illustrated in the diagram below by comparing (1) with (4) of the 

diagram above (with the blue lines in (1) and (4) being twice their original length): 

 

 

 
We can see that in (1) the red lines are nowhere close to being the same length as the blue 

lines, but in (4) they are very close to being the same length as the blue lines.  

 

Returing to our previous calculations of |x2 – 1| and |x2 – 1|, the truth is that the calculations of 

0.51 ≉ 2×0.3, 0.0199 ≈ 2×0.01, etc. previously presented are technically inaccurate. We should 

actually include the x value of “1” into our calculations, so that we have 0.51 ≉ 2×1×0.3, 

0.0199 ≈ 2×1×0.01, 0.62 ≉ 2×1×0.3, and 0.0201 ≈ 2×1×0.01. This is because it is in the nature 

of finding the derivative at a point that that point be included in the arithmetic calculation.  

 
The reason as to why this has to be the case can only be seen when we do the proper 

mathematical analysis of differentiation, which we have done in sections ##. But given that 

we are looking at the derivative from a numerical-distribution perspective, we simply take as 

a heuristic the need to include the x value into our calculation. 

 
In general we can therefore say that, as |� � 1| (the distance between x and 1, or the length of 

the blue lines) and |�� � 1| (the distance between x2 and 1, or the length of the red lines) get 

smaller and smaller, we have that |�� � 1|  ≈ 2|� − 1|. Ultimately we have |�� � 1| = 2|� − 1| 
when x approaches 1. The value “2” is the derivative of x2 with respect to the original 

(untransformed) x values when x = 1. 
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In the above analysis we have actually performed a limiting process which, from our previous 

work, does not allows us to an perform an evaluation at x = 1. In other words, the idea of |�� � 1| = 2|� − 1| only applies when x → 1 and not when x = 1, and this is represented in the 

table above by leaving the cells blank. 

 

We can repeat the analysis above for any value of x. In other words, the speed of distribution 

of values around x2 = c2 compared to the distribution values around x = c will approach more 

and more a particular constant (which will be different for different values of c). In visual 

terms, and using the previous diagram as a guide, as x approaches c the red lines will 

approach a constant multiple of the blue lines given by |�� � Y�| � 2Y|� − Y|. 
 

Examples for two other x values are shown in the table of calculations below: 

 
For x = 0.7 

 
x 0.67 0.68 0.69 0.695 0.699 0.7 0.701 0.705 0.71 0.72 0.73 

x2 0.4489 0.4624 0.4761 0.4830 0.4886 0.49 0.4914 0.4970 0.5041 0.5184 0.5329 

            

|x - 0.7| 0.03 0.02 0.01 0.005 0.001   0.001 0.005 0.01 0.02 0.03 

|x2 - 0.49| 0.0411 0.0276 0.0139 0.006975 0.001399   0.001401 0.007025 0.0141 0.0284 0.0429 

 
 
On the left hand side of (0.7, 0.49), for distances far away from (0.7, 0.49), we have 0.0411≉ 

2×0.7×0.03, but as we get closer to the value (0.7, 0.49), 0.001399 ≈ 2×0.7×0.001. The same 

thing happens to the respective values on the right hand side of (0.7, 0.49). So, as |� � 0.7| and |�� � 0.49| get smaller and smaller we have that |�� � 0.49|  ≈ 2 × 0.7 × |� − 0.7| as x 

approaches 0.7. Again, the value “2” is the derivative of x2 with respect to the original 

(untransformed) x values when x = 0.7. 

 
For x = 4 

 

x 3.7 3.9 3.9 3.95 3.99 4 4.01 4.05 4.1 4.2 4.3 

x2 13.69 15.21 15.21 15.6025 15.9201 16 16.0801 16.4025 16.81 17.64 18.49 

            

|x - 4| 0.3 0.1 0.1 0.05 0.01   0.01 0.05 0.1 0.2 0.3 

|x2 - 16| 2.31 0.79 0.79 0.3975 0.0799   0.0801 0.4025 0.81 1.64 2.49 
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On the left hand side of (4, 16), for distances far away from (4, 16), we have 2.31 ≉ 2×4×0.3, 

but as we get closer to the value (4, 16), 0.0799 ≈ 2×4×0.01. The same thing happens to the 

respective values on the right hand side of (4, 16). So, as |� � 4| and |�� � 16| get smaller and 

smaller we have that |�� � 16|  ≈ 2 × 4 × |� − 4| as x approaches 4. Again, the value “2” is the 

derivative of x2 with respect to the original (untransformed) x values when x = 4. 

 

Note that the derivative of 2 at the above values of x applies only when comparing the 

distribution of the transformed x2 values to the distribution of untransformed x value. If the 

distribution of x2 values is compared with an alternative distribution of values (this acting as 

the original untransformed values, or alternative “x-axis”) the derivative of x2 with respect to 

this alternative untransformed distribution would be different.  

 
For example, if our original untransformed distribution were x2 itself then values along this “x-

axis” will be distributed a la x2, so the function %�� � �� will not transform the “x-axis”, since 

the “x-axis” already has the x2 distribution pattern: 

x

 
 
 
So the “transformed” x2 values (the red dots on the red axis) are neither speeding up nor 

slowing down with respect to the untransformed x2 values (the blue dots on the blue axis), but 

are actually keeping pace with the untransformed x2 values. Hence the derivative of 

transformed x2 values with respect to untransformed x2 values is 1 over the whole range of 

transformed x2 values 

 
As another example, if our original untransformed distribution (i.e. our alternative x-axis) is 

4x then values along this “x-axis” will be stretched out by a factor of 4: x = 1 becomes new-x = 

4, x = 2 becomes new-x = 8 etc. The diagram below shows the untransformed 4x-axis for 

integer values in the interval [−4, 4], along with the usual transformation %�� � ��: 

  



 

61 

 

 

 

And as before we can ask, At what rate are the x2 values changing around, or at, a given point 

x2 = c2 compared to the 4x values around, or at, 4x = c? For this, and for more complicated 

distributions, we then resort to the maths of calculus (the above situation would be dealt with 

via something called the chain rule). 

 

1.9 The second and third derivatives (to come)  

1.9.1 The definition of the second derivative 

 

1.9.2 The second derivative as curvature 

 

1.9.3 The definition of the third derivative 

 

1.9.4 The third derivative as abberancy 
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1.10 Equations involving the derivative in nature: Selected examples 

In general the symbolism “df/dx” simply refers to a rate of change of f(x) with respect to x. 

However, the use of derivatives allows us to represent physical processes, and in specific 

situations the derivative df/dx will represent a physical process having a specific physical 

meaning.  

 
Examples of equations involving derivatives which represent physical processes in nature are 

shown in Table 3 below. I have been very biased in the example I have chosen since the areas 

below are those of most interest to me. If your interest lies in other subjects then ask your 

teachers for examples of the use of derivatives in these subjects. 

 

 Function First derivative Second derivative 

Mathematics 
y(x) 

Position w.r.t. x 

dy/dx 
Slope/gradient 

(steepness of a curve) 

d2y/dx2 
Curvature 

(degree of bending 
of a curve) 

Mechanics 
s(t) 

Position at any time t 

ds/dt 
Speed 

(rate of change of 
position) 

d2s/dt2 
Acceleration 

(rate of change of 
speed) 

Electricity  
q(t) 

Electric charge  

i = dq/dt 
Current  

(rate of flow of charge) 
− 

Electricity  

V(r) 
Voltage at a given 
distance r from an 

electric souce 

E = dV/dr 
Electric field intensity E, 

for an electric field of 
constant strength 

(rate of change in voltage 
over a distance r) 

− 

Chemistry  
ci(t) 

Concentration (molar) 

dc/dt 
Reaction  

(rate of change of 
concentration) 

− 

Nuclear decay  

N(t) 
Number of atoms at 

any one time 

dN/dt 

Radioactive decay 
(rate of change of the 

number of atoms) 

− 
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Wave motion  

x(t) 
Displacement of a 
mass at any time t 
from equilibrium 

position 

dx/dt 
Velocity of a mass at any 
time t with respect to the 

mass’s equilibrium 
position 

d2x/dt2 = −λx 
Simple harmonic 

motion 
(Acceleration 

relating to current 
position) 

Mechanics  
x(t) 

Position at any time t 

m.dx/dt = mv 

Momentum  

m.d2x/dt2 = ma 
Acceleration relating 

to an applied force  

Table 3: The physical meaning of certain derivatives 

 

1.11 The derivative of other basic functions from 1st principles 

In section 1.3 we learnt that the limit of the difference quotient produces a function which 

represents the derivative of y = f(x). In this section we will go through developing derivative 

functions relating to y = f(x). Our starting point will always be the definition of the derivative 

given as equation (1), and reproduced below: 

0%0� � lim� →�
%(� + ��) − %(�)

��  . 

Finding derivatives based on this expression is called differentiating from 1st principles.  

 
1.11.1 The derivative of sin(x) 

We now come to finding the derivative of the three basic trigonometric functions %�� � sin �, %�� � cos �, and %�� � tan �. As usual we will do this from first principles.  

 
Starting with %�� � sin �, by the definition of the first derivative we have 

0%0� � lim� →�
sin(� + ��) − sin �

��  . 

The first question is, Can we evaluate the limit as it stands? If there is then we have the 

answer to the derivative. Usually, however, we will not be able to evaluate the limit as it is 

given here (because it leads to a “0/0” situation which is not a valid answer). 

 
We could consider forming two separate limits to the expression above (which is legal in 

maths) to get 0%/0� = lim� →�4sin(� + ��)5/�� − lim� →� sin � /�� to see if this helps us get an 

answer. But, doing a table of values of both limits will show they approach infinity.  
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So this form of algebra, i.e. simply splitting the limit into two separate limits, doesn’t work for 

us at this stage (but this doesn’t mean that such an approach won’t work later). 

 
So we now have to consider doing something else. Usually this involves doing some 

simplifying algebra, specifically simplifying the expression inside the limit. In this case since 

our limit involves trig function we should always consider using trig identities to simplify 

where possible. As such we could use the identity sin(] − ^) = sin ] cos ^ − sin ^ cos ], and 

this would indeed lead us to the derivative of sin �. However, we will see that the identity  

sin _ − sin ` = 2 sin _ − `
2 cos _ + `

2  

will give us a quicker route to the derivative. Therefore we have 

0%0� � lim� →�
2 sin a� + �� − �

2 b cos a� + �� + �
2 b

��  . 

Simplifying gives 
 

 0%0� � lim� →�
2 sin a��

2 b cos a� + ��
2 b

��  . (*) 

Having done this algebraic transformation we again ask the question, Can we evaluate the 

limit? The answer this time is yes. But when we are learning something totally new we don’t 

know this. So we need to go through explaining why the above limit is now evaluatable. 

 
To see this let use groups terms of the previous expression in the very specific way shown 

below: 

 0%0� � lim� →�
sin a��

2 b
��
2

× lim� →� cos ,� + ��
2 - . (**) 

I have done several things here. Firstly I have split the expression (*) into two limits. There is 

mathematical theory which allows us to do this. However, because this theory is beyond our 

current mathematical level this is one of those moments where we will have to accept that 

this can be done. We can, of course, test that such a split works by setting up a table of values 

for limit in (*) and compare with the table of values for the product of the limits in (**). At 

least this would give us numerical conformation of the validity of splitting the limits (this is 

left as an exercise). 

 



 

65 

 

Secondly, I have brought the “2” down to divide the δx of the denominator. This is because 

this limit can be evaluated directly in this form, something we will see in a moment.  

 
Thirdly, and most importantly, we split the fraction as sin���/2/���/2 and cos�� � ��/2, 
not as sin���/2 and cos�� � ��/2 /���/2 or any other combination. Again, when we are 

learning this for the first time we won’t know why we do it this way. But once we have gone 

through learning about certain limits we will be in a position to know which terms to group in 

(*) in order to give us limits we can evaluate. 

 
So, back to (**). The first limit expression of lim� →� sin���/2/���/2  will give us the answer 1. 

To see this we can set up a table of values as shown below. Remember that for a limit to be 

valid it has to give us the same answer when we approach a given value from the left hand 

side (in this case δx being very small negative numbers) as from the right hand side (in this 

case δx being very small positive numbers). 

δδδδ x y = sin(δδδδ x/2) / (δδδδ x/2) 

  

-0.2 0.998334166468282 

-0.02 0.999983333416666 

-0.002 0.999999833333342 

-0.0002 0.999999998333333 

… … 

0 ? 

… … 

0.0002 0.999999998333333 

0.002 0.999999833333342 

0.02 0.999983333416666 

0.2 0.998334166468282 
 

 

Table of values    δx approaches 0 from the left and the right  

 

It is important to note that this is only true when our angles are measured in radians. If this is 

the case, any limit of the form  

lim��→� sin �� � 1 

for any value of θ. We just have to make sure that the denominator is exactly the same form as 

the variable used in the sine function.   
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We can prove this limit using geometry, and this will be shown in section 1.11.2 (an algebraic 

mathematical proof requires more advanced maths which we do not yet have so we will make 

do with the geometric proof to come).  

 
Notice also that the limit equals 1 from below whether δx approaches 0 from the left or the 

right. This is okay. Not all limits have to approach the limit value from above and below as was 

the case when defining the derivative df/dx. The key is that we get the same limit value when 

δx approaches 0 from the left or the right. 

 
The second limit expression of lim� →� cos(� + ��/2) can be evaluated directly to give cos��. 
This is not because we do δx = 0. We can’t do this since we are only ever letting δx approach 

zero. So what is the difference between getting the correct answer cos�� � ��/2) = cos � by 

incorrectly doing δx = 0, and getting the correct answer of cos�� � ��/2) = cos � when 

letting δx approach 0? Well, essentially we want to see that cos�� � ��/2) approaches cos�� as δx gets smaller and smaller so that when δδδδx approach 0, cde�$ � #$/') = cde $, 

and we cannot take this for granted when dealing with limiting values. That this indeed 

happens can be seen visually  in the diagram below, where the circle is of unit radius: 

 

 

(in this case we also see that sin(� + ��/2) = sin � as δx approaches 0). If there is one thing to 

remember when dealing with infinitely small quantities such as δx is it this:  

 
the result of arithmetic or algebraic calculations involving arbitrarily small numbers is not 

obvious and can produce un-intuitive results. 

Hence all terms involving infinitely small variables must be appropriately tested  

to see what results they give.   
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We have gone through a few table-of-values calculations to see that the limiting process does 

give (seemingly) unexpected results, so it seems possible that it is not obvious that cos�� � ��/2 � cos�� as δx approaches 0.  

 
Anyway, we ultimately have the following: 

If %�� � sin � then 
0%0� � cos � . 

 

I previously mentioned that we could have used sin�] � ^ � sin] cos ^ � sin ^ cos] as our 

simplifying trig identity. Let us go through what would have happened if we had done this: 

0%0� � lim� →� sin�� � �� � sin ���  ,  

 � lim� →� sin � cos �� � sin �� cos � � sin ���  .  

We now need to decide how to group the terms of the fraction in  so that we get limits we 

can evaluate. One thing we should be able to see is our previously seen lim� →� sin��� /��. So 

our grouping will be  

0%0� � lim� →� sin � cos �� � sin ��� � lim� →�
sin ����  cos � .  

 
Since the term cos � of the second limit is independent of δx we can take this term out of the 

limit. Then applying the limit, i.e. letting �� → 0, to sin��� /�� we have 

0%0� � lim� →� sin � cos �� � sin ��� � cos � .  

Looking at the limit in  we should see that the term sin � is independent of δx so we can 

factorise this term out of the limit: 

0%0� � sin � lim� →�
cos �� � 1�� � cos � . ⑥ 

 

We now have to decide if the limit in ⑥ is evaluatable. Looking at the table of values below we 

see that it is: 
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δδδδ x y = (cos(δδδδ x) - 1) /δδδδ x 

  

-0.1 0.049958347219742 

-0.01 0.004999958333474 

-0.001 0.000499999958326 

-0.0001 0.000049999999696 

… … 
 

 

Table of values    δx approaches 0 from the left 

 

 

 

δδδδ x y = (cos(δδδδ x) −−−− 1) /δδδδ x 

  

… … 

0.0001 -0.000049999999696 

0.001 -0.000499999958326 

0.01 -0.004999958333474 

0.1 -0.049958347219742 
 

 

Table of values    δx approaches 0 from the right 

 

From the tables above we see that  

lim� →�
cos �� − 1

�� = 0 

and expression  becomes 0%/0� = cos � as usual. 

 

1.11.2 A geometric proof that f	g�→�(�	
 �)/� = 1 

Here we will go through proving the aforementioned limit. To do this we will use the diagram 

below which consists of a circle of radius OR = OP = r, an inner triangle OPS, a sector OPR and 

an outer triangle OQR. 
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Our aim will be to set up three different area formulas, one for the sector and one each of the 

two triangles. The significance of these area expressions is that they will allow us to get the 

answer we are looking for. How do you know this? Well, at the beginning, you don’t. And, at 

the beginning, you’re not supposed to know this. How can you? When this proof was originally 

developed the person or people who developed it did not initially know that this was the way 

to do it. They would have tried several different ideas and approaches before realising that 

one way to get to the answer was to start with he ideas of areas of geometric objects such as 

those  in the diagram above. 

 
However, this still doesn’t help us to understand, at this moment in time, why we can use the 

idea of areas of the triangles and sector. So, one way around this “why do we do it this way?” 

gap is to simply go through the proof to make sure you understand the steps involved, after 

which you can go back to the first step knowing now how it is going to be used to give us the 

answer we now know. 

 
To set up expressions for the areas we will have to use basic trig, and remember the area of a 

sector as 
D� h��. So, the three areas are 

1
2 (i8)(_8) = 1

2 (h. cos �)(h. sin �) , 1
2 h�� , 1

2 (ij)(j`) = 1
2 (h)(h. tan �) . 

Inner triangle OPS, Sector OPR, Outer triangle OQR. 
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Notice that the area of the inner triangle OPS is smaller than the area of the sector OPR which 

is smaller than the area of the outer triangle OQR. Therefore, in terms of areas this can be 

represented pictorially as shown here: 

 

 

k 

 

 

k 

 

 

Hence  12 �h. cos ��h. sin � k 12 h�� k 12 �h�h. tan � . 
Simplifying we get cos � . sin � k � k tan� . 
As discussed previously we can ask the question, Can we evaluate this inequality as θ 

approaches 0? No, for two reasons. Firstly we don’t have the expression �sin �/� so there is 

no point in evaluating the limit of this inequality. Secondly, even if we do evaluate it we get 0 k 0 k 0 which is true but doesn’t help us.  

So, at this point we need to do some algebra in order to try to obtain a �sin�/� expression. 

The closest we can get to this if we divide this inequality by sin �. But we now have to be 

careful: is sin � positive or negative? Remember that if we divide an inequality by a negative 

value the direction of the signs change. So remembering that sin � looks like this … 

 

… we see that it is non-negative (i.e. positive or zero) only in the interval [0, π]. From the 

original circle diagram above this means that our proof will (for the time being) only be valid 
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when θ rotates anticlockwsie from 0 to π radians. To make our proof valid for all θ we will 

have to deal with the case of negative θ. This we will do in a moment. 

 
So assuming for the moment that � ∈ 40, l5 we can divide the above inequality by sin � to get 

cos � k �
sin � ≤ 1

cos � . 

Having done some algebra to transform the previous inequality into this one above we can 

again ask the question, Can we evaluate this inequality as θ approaches 0? Yes. But before we 

do this we notice that we are nearly close to forming the expression �sin �)/� that we need. 

All we have to do is take the reciprocal of the inequality and we have our  �sin �)/�: 

1
cos � ≥ sin �

� ≥ cos � , 

remembering to change the direction of the inequality signs (why?).  Now we can take limits: 

 lim�→�
1

cos � ≥ lim�→�
sin �

� ≥ lim�→� cos �. (*) 

The limit on the left hand side is 1, and the limit on the right hand side is also 1. What does 

this imply about the limit of �sin �)/�? Well, this also has to be 1. This approach to proving a 

limit, by squeezing in onto our desired expression from the left and the right is a 

mathematically valid way of proving things. 

 
There still remains one matter: what if θ is negative? What if θ lies in �l, 2l)? We could repeat 

the above analysis using the diagram below,  

 

but a quicker way is to substitute – � into (*): 
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lim�→�
1

cos(−�) ≥ lim�→�
sin(−�)

−� ≥ lim�→� cos(−�). 

 
This simplifies to the same expression as (*). So it doesn’t matter if θ is positive or negative, 

we get the same result, i.e.  

lim�→�
sin �

� = 1 for  � ∈ 40, 2l5. 
 

So we have the amazing fact that as θ approaches 0 the area of the triangles and the area of 

the sector individually become 0, but the ratio of the arc length to vertical length of the inner 

triangle equals 1. This is the hidden feature of the geometric construction shown above, and 

many other geometries elsewhere in mathematics. 

 
Note that in deriving the proof of the above limit we could also have used other geometric 

configurations such as either of those in the following two diagrams (or any other diagram 

which would allow us to form three area formulas from which to get the expression �sin ��)/��): 

  
 
Area of triangle OPR  

≤ area of sector OPR 

≤ area of triangle OQR 

 
Area of sector OPS  

≤ area of triangle OQS 

≤ area of sector OQR 
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I leave it as an exercise for you to develop the correct inequalities for both of these geometric 

set-ups, and to simplify these to prove the limit. 

 

1.11.3 The derivative of cos(x) 

Finding the derivative of %�� � cos � from first principles follows exactly the same approach 

as that for finding the derivative of %�� � sin �. We will again use first principles as our first 

step. Since we won’t be able to evaluate this limit as it stands we will use an appropriate trig 

identity in order to simplify the fraction. We will then decide if we can evaluate this simplified 

limit (which in this case we will be able to). 

 
So, from first principles we have 

0%0� � lim� →�
cos(� + ��) − cos �

��  . 

As ever we ask, Can the limit be evaluated as it stands? No. Technically we can evaluate the 

limit for any specific value of x, say x = π/3 and get an answer to the derivative at that point. 

But we don’t know if this limit can be evaluated for all values of x (i.e. �∞ < � < ∞). Anyway, 

we want the general function expression for the derivative, not just the slope at one point. In 

this case we do not know how to evaluate the limit above as it stands.  

 
As we did in the previous section when learning to differentiate sin x we could split the above 

expression into two separate limits to get 0%/0� = lim� →�4cos(� + ��)5/�� − lim� →� cos � /��, but 

a table of values would show that both limits approach infinity. So, again, this form of algebra, 

i.e. simply splitting the limit into two separate limits, doesn’t work for us at this stage. 

 
So finally we decide to do some algebra to simplify the above expression in order to get a limit 

(or limits) we know how to evaluate. As in the previous section, so here we will use a trig 

identity to break the numerator apart. And, again, we will use one from the same family of trig 

identities, namely : 

cos_ � cos` � �2 sin _ + `
2 sin _ − `

2  . 

So our first principles expression becomes 

0%0� � lim� →�
−2 sin a� + ��

2 b sin a��
2 b

��  . 
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Again we ask, Can the limit be evaluated as it stands? Based on our experience of limits from 

the previous section we should see that the answer is yes. We can see this by suitably re-

grouping terms in this last expression in such a way as to form limits we can evaluate.  

 
Therefore we write 

0%0� � � lim� →� sin ,� � ��2 -  O lim� →�
sin a��2 b��2  . 

From our work in the previous section we know that the last limit evaluates to 1 

(remembering that this applies only when our angles are measured in radians), and that the 

first limit simply gives us cos �. So ultimately we have the following: 

If %�� � cos � then 
0%0� � � sin � . 

 

1.11.4 The derivative of tan x 

Here we will see how to differentiate %�� � tan � from first principles. So we have 0%0� � lim� →� tan�� � �� � tan ���  . 
At this point we might be tempted to use a trig identity (there are two that could be used), but 

a simpler way is to simply recast tan � as sin � / cos �, thus giving us 

0%0� � lim� →�
sin�� � ��cos�� � �� � sin �cos ���  . 

Cross-multiplying in the numerator we get 

0%0� � lim� →�
sin�� � �� cos � � sin � cos�� � ��cos�� � �� cos ���  . 

At this point we could use either of the trig identities sin�] � ^ � sin] cos ^ � sin^ cos ] or sin _ � sin` � 2 sin4�_ � `/25 . cos4�_ � `/25. We will look at both to see what happens. 

The use of the former identity is shown as version A on the left hand side of the two solutions 

below, and the use of the latter identity is shown as version B on the right hand side of the two 

solutions below: 
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0%0� � lim� →� sinq�� � �� � �r�� cos�� � �� cos �  , 
 0%0� 

 � 

 lim� →� 4sin�2� � �� � sin ��5/2�� cos�� � �� cos �  

 � lim� →� 4sin�2� � �� � sin ��5/2�� cos�� � �� cos �  , 
 

 � 

 lim� →� sin ����  

O lim� →� 1cos�� � �� cos �  , 
 � lim� →� sin ���� cos�� � �� cos � , 

 � lim� →� 1cos�� � �� cos �  .  

 � 

 lim� →� sin ����  

O lim� →� 1cos�� � �� cos �  , 
    � lim� →� 1cos�� � �� cos �  . 

 Version A Version B  

 
In either case we are left with evaluating the final limit. From previous work we know that cos�� � �� � cos � as �� approaches 0. Hence  0%0� � 1cos � . cos � � 1cos� � � sec� � . 
So we have the following: 

If %�� � tan � then 
0%0� � sec� � . 

 

 
1.11.5 The derivative of sec x, cosec x, and cot x 

In using first principles to prove the derivative of sec � , cosec �, and cot � we will use eactly 

the same thinking as we have done previously. Here I will present only the proofs of the 

derivatives of these. I leave it as an exercise for you to recognise why the steps have been 

done as they have. 
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For %�� � sec �, and using first principles, we have 
 

0%0� � lim� →� sec�� � �� � sec ���  , 
 

 � lim� →�
1cos�� � �� � 1cos ���  , 

 � lim� →� 1�� tcos � � cos�� � ��cos � cos�� � �� u , 

 � lim� →� 1�� v�2 sin a� �
��2 b sin a���2 bcos � cos�� � �� w , 

 � 
1cos � lim� →�

1�� v�2 sin a� �
��2 b sin a� ��2 bcos�� � �� w , 

 � 
1cos � lim� →�vsin a

��2 b��/2 w lim� →�vsin a� �
��2 bcos�� � ��w , 

 � 
1cos � . sin �cos � , 

 

as �� → 0. So we have that  

if %�� � sec � then 
0%0� � sec � tan � . 
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For %�� � cosec �, and using first principles, we have 
 

0%0� � lim� →� cosec�� � �� � cosec ���  , 
 

 � lim� →�
1sin�� � �� � 1sin ���  , 

 � lim� →� 1�� tsin � � sin�� � ��sin � sin�� � �� u , 

 � lim� →� 1�� v2 sin a�
��2 b cos a� � ��2 bsin � sin�� � �� w , 

 � � 1sin � lim� →�
1�� v2 sin a

��2 b cos a� � ��2 bsin�� � �� w , 

 � � 1sin � lim� →�vsin a
��2 b��/2 w lim� →�vcos a� �

��2 bsin�� � �� w , 

 � � 1sin � . cos �sin � , 
 

as �� → 0. So we have that  

if %�� � cosec � then 
0%0� � �cosec � cot � . 
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For %�� � cot �, and using first principles, we have 
 

0%0� � lim� →� cot�� � �� � cot ���  , 
 

 � lim� →�
cos�� � ��sin�� � �� � cos �sin ���  , 

 � lim� →� 1�� tsin � cos�� � �� � cos � sin�� � ��sin � sin�� � �� u , 

 � lim� →� 1�� tsinq� � �� � ��rsin � sin�� � �� u , 

 � � 1sin � lim� →�
1�� t sin���sin�� � ��u , 

 � � 1sin � . 1sin � , 
 

as �� → 0. So we have that  

if %�� � cot � then 
0%0� � �cosec� � . 

 

 

For the last four derivative of tan �, sec �, cosec � and cot � there are quicker way to 

differentiate these function by using the fact that tan � � sin � / cos �, sec � � 1/ cos �, etc. 

However, this requires the use one of the differentiation rules called the quotient rule. We will 

get to this rule, as well as differentiating the aformentioned functions accordingly, in the 

Differentiation II notes. 
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1.11.6 The derivative of ax 

We have seen how to differentiate %�� � �> where x is the variable and n is a real number. 

What about differentiation %�� � 
  ? In this section we will see how to do this. For the sake 

of convention, and because most books show it this way, we will look at the function as %�� � 3  where a is a real number. 

 
So, by the definition of the derivative we have 

0%0� � lim� →�
3 x� − 3 

��  , 

 � lim� →�
3 (3� − 1)

��  . 

Since ax is independent of δx we take take this out of the limit to get 

 
0%0� � 3 lim� →�

3� − 1
��  . [*] 

Now all we have to do is evaluate the limit. If the limit is evaluatable (note that  not all limit 

are evaluatable) then it will be some some value, k, say. So we can say that we have found the 

derivative of %�� � 3  to be 0%/0� = y. 3  where k is the answer to the limit shown in [*], 

and changes depending on the value of a. In other words, k will be different when 

differentiating 2  than when differentiating 3  than when differentiating 4 , etc. 

 
Let us now evaluate the limit for a few values of a: 

a = 1   

δδδδ x (aδδδδx −−−− 1)/δδδδ x 

   

-0.1 0 

-0.01 0 

-0.001 0 

-0.0001 0 

-0.00001 0 

… … 

0 0 

… … 

0.0001 0 

0.0001 0 

0.001 0 

0.01 0 

0.1 0 
 

a = 2   

δδδδ x (aδδδδx −−−− 1)/δδδδ x 

   

-0.1 0.66967008463193 

-0.01 0.690750456296496 

-0.001 0.692907009548049 

-0.0001 0.693123158469477 

-0.00001 0.693144778396437 

… … 

0 0.693147180559945… 

… … 

0.00001 0.693149581998398 

0.0001 0.693171203700604 

0.001 0.693387462580075 

0.01 0.695555005671 

0.1 0.7177346253629 
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a = 3   

δδδδ x (aδδδδx −−−− 1)/δδδδ x 

   

-0.1 1.04041540159238 

-0.01 1.092599582783 

-0.001 1.09800903512203 

-0.0001 1.09855194343034 

-0.00001 1.09860625400193 

… … 

0 1.09861228866811… 

… … 

0.00001 1.09861832300329 

0.0001 1.09867263829999 

0.001 1.09921598420004 

0.01 1.104669193785 

0.1 1.161231740339 
 

a = 4   

δδδδ x (aδδδδx −−−− 1)/δδδδ x 

   

-0.1 1.29449436703875 

-0.01 1.37672955066408 

-0.001 1.38533389897107 

-0.0001 1.38619827495728 

-0.00001 1.38628475210401 

…  

0 1.38629436111989… 

…  

0.00001 1.38630397022457 

0.0001 1.38639045616315 

0.001 1.38725571133453 

0.01 1.39594797900291 

0.1 1.48698354997035 
 

 

So we have the following derivatives 

%�� � 1  implies 0%0� � 0 , %�� � 2  implies 0%0� X 0.69315 O 2  , 
%�� � 3  implies 0%0� X 1.09861 O 3  , %�� � 4  implies 0%0� X 1.38629 O 4  . 

 

But we can’t keep doing this everytime we want the derivative of an exponential function. 

Firstly, apart for f(x) = 1x,  our results are not exact. Secondly, there must be a more direct and 

general way of finding such derivatives which also gives us exact results. And there is. We will 

find this in two stages. The first stage we will do here, and the second stage we will have to 

wait to do in the “Differentiation II” notes. 

 
Now, looking at the tables above it seems that there is a specific value of a between a = 2 and a 

= 3 whereby the value of the limit is 1. If we can find this value of a then our derivative would 

simply be 0%/0� � 3  for that value of a. So our first stages is to find a. Our second stage will 

be to find a general way of differentiating %�� � 3  when a is not this specific value. The 

second stage will involve techniques of differentiation such as the chain rule or implicit 

differentiation which we will learn only in the “Differentiation II” notes. 
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For our first stage, let us assume that there is a value of a such that  

lim� →� 3� � 1�� � 1 . 
At this point it might be tempting to set up a table of values of q3� � 1r/�� as δx approaches 

zero. But what value of a do we use to do this? Do we use a = 1 or a = 2 or a = 3? What about 

when a = 3.141592653…. Yet another thing to understand about limits is that just because we 

can find a limit for one value of a variable it doesn’t automatically mean that there is a limit for 

all values of that variable.  

 
In that case we try a different tactic. When δx is small (but does not approach 0) we can say  

3� � 1�� X 1 . 
Let us solve this expression for a: 

3� � 1 X �� , 
3�  X 1 � �� , 
3 X �1 � ��D/�  . 

 

If, when evaluating the right hand side of the above equation as δx approaches 0, we get an 

actual value for a we can say that this is the value that will make the previous limit equal to 1. 

The evaluation of this limit (from both the left hand side and right hand side of 0) is here: 

δδδδ x y = (1 + δδδδ x)1/δδδδ x 

  

-0.1 2.867971990792440 

-0.01 2.731999026429030 

-0.001 2.719642216442830 

-0.0001 2.718417755009750 

-0.00001 2.718295419980410 

-0.000001 2.718283187679370 

-0.0000001 2.718281962942360 

-0.00000001 2.718281855709170 

… … 
 

 

Table of values    δx approaches 0 from the left 
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… … 

0.00000001 2.718281786395800 

0.0000001 2.718281693980370 

0.000001 2.718280469156430 

0.00001 2.718268237192300 

0.0001 2.718145926824360 

0.001 2.716923932235520 

0.01 2.704813829421530 

0.1 2.593742460100000 
 

y

e

0
x

 

Table of values    δx approaches 0 from the right 

 

So the expression �1 + ��)D/�  does converge, and it converges to the number a = 2.718281… 

Because of this, our assumption that q3� � 1r/�� converges to the value 1 as δx → 0 is 

correct. So we now have that  0%0� � 3  

when a = 2.718281… This last number is so special that it is given a symbol: e.  

 
We can now complete the process of finding the derivative of %�� � 3 . In general we have  

0%0� � 3 lim� →�
3� − 1

��  . 

But when a = e we have  

%�� � .  Therefore 
0%0� � .  . 

 

This is the derivative of “the” exponential function. A quicker way of differentiating . , using 

something called implicit differentiation, will be shown in the Differentiation II notes. 

 
Note that there are a number of issues relating to q3� � 1r/�� which we have not addressed 

in terms of formal mathematical anaysis, namely something called continuity (without which 

the limit may never become equal to 1 even though the table of values above suggests this), 

and something about the function being said to be strictly increasing (without which the limit 

may equal 1 for several diferent values of a).  
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This would require learning some more advanced maths which is beyond the scope of these 

notes, so for the moment we will have to accept the intuitive notion that the above limit does 

exist. 

 
1.11.7 The derivative of  f|7� � 

Having seen how to differentiate 3 , where a is a real number, it would be nice to know how 

to differentiate the inverse of this function. Such an inverse is given by a log function. So let us 

go through learning how to differentiate %�� � log� �, where a is a real number and x is 

positive only (because, for our purposes, log functions only exists when x is positive). 

 
So from 1st principles we have  

0%0� � lim� →� log��� � �� � log� ���  , 
 

 

� lim� →�
log� �� � �����  , 

 � lim� →� 1�� log� ,1 � ��� - , 

 � lim� →� log� ,1 � ��� -
D/� . 

Recall �1 � ��D/� . This was a limit we we could evaluate. It gave use the value e = 2.71828…. 

Looking carefully at the form of the limit above we see that we nearly have this form. If we 

had �1 � ��/� /�  this would be of the form �1 � }D/~ (where } � ��/�), which we know 

how to evaluate. So let us create the form that we want by doing an algebraic trick that will 

allow us to introduce an x as an exponent. We do this by mutliplying our limit by x/x: 

0%0� � �� lim� →� log� ,1 � ��� -
D/� . 

The reason for this should become clear as we go through the following steps. Now, since x is 

independent of δx we can move either one of these into the limit. In our case we will move the 

numerator “x” into the limit: 

0%0� � 1� lim� →�� log� ,1 � ��� -
D/� . 
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The reason for doing this is because we can now use the rules of log to transform this 

multiplying “x” into a powering “x”: 

0%0� � 1� lim� →� log� ,1 � ��� -
 /� . 

This is why we wanted to multiply our limit by x/x. It was to allow us to be able to introduce 

the necessary power of x onto the bracketed term so that we could then have the exponent to 

be the reciprocal form of the fraction inside the bracket so that we could then evaluate the 

limit. 

 
Wouldn’t it be nice if the limit was equal to 1. Then we would have the derivative to simply be 

1/x. But this would depend on the value of a. The question is, Is there a value of a for which 

the limit equals 1? Yes. 

 
To see that there is, let us assume that there is such a value whereby 

 lim� →� log� ,1 � ��� -
 /� � 1 . {*} 

At this point it might be tempting to set up a table of values of lim� →� log��1 � ��/� /�  as δx 

approaches zero. But what value of a do we use to do this? Do we use a = 1 or a = 2 or a = 3? 

What about when a = 3.141592653….  

 
So we use the same tactic we used in the previous section on the derivative of the exponential 

function 3 , namely that we say  

log� ,1 � ��� -
 /� X 1 . 

when δx is small (but does not approach 0). Solving this expression for a we get 

 ,1 � ��� - /� X 3. {**} 

If, when evaluating the right hand side of the above equation, as δx approaches 0, we obtain 

an actual value we can then say that this value is what will make the previous limit equal to 1.  

 
Note that we have already seen a table of values for {**}. This was shown in Table 2 on p15. To 

see how this is the same as (1 + δx/x)x/δx let z = x/δx. Then (1 + δx/x) x/δx = (1 + 1/z)z. which is 

the same function as that shown in Table 2 but with x replaced by z. 
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Now, since we have changed our variable from x to z, we have to put a z number into our 

latter expression. In other words, we have to change from a δx-limiting-value to a z-limiting-

value. So, as δx approaches 0, z = x/δx approaches infinity. In fact, this is true however big the 

values of x become, since ∞ will always be miles bigger than any x value I can imagine. So I 

don’t need to worry about the size of x. I just need to evaluate (1 + 1/z)z based on z 

approaching infinity. 

 
Hence we set up a table of values for = (1 + 1/z)z as z → ∞ as shown below. 

 
z 1/z (1 + 1/z)z 

    

1 1.000000000000000 2.000000000000000 

10 0.100000000000000 2.593742460100000 

100 0.010000000000000 2.704813829421530 

1000 0.001000000000000 2.716923932235520 

10000 0.000100000000000 2.718145926824360 

100000 0.000010000000000 2.718268237197530 

1000000 0.000001000000000 2.718280469156430 

10000000 0.000000100000000 2.718281693980370 

100000000 0.000000010000000 2.718281786395800 

… … … 

Approaching infinity Approaching 0 2.718281828459045 
 

Table 4: Table of values for (1 + 1/z)z as z → ∞ 

 

From this we see that the expression �1 + ��/� ) /�  does converge, and it converges to the 

number e. Hence our assumption that log�(1 + ��/�) /�  converged to the value 1 as δx → 0 

was correct, and the value for a for the base of the log in expression {*} on p84 which makes 

this true is a = e. So we now have that  0%0� � 1
� 

when a = e = 2.718281… Noting that loge is in fact the ln function we can now complete the 

process of finding the derivative of %�� � log� �:  

0%0� � 1
� lim� →� log� ,1 + ��

� -
 /� 

. 
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But when a = e we have  

%�� � ln � Therefore 
0%0� � 1� . 

 

This is the derivative of the natural log function. A quicker way of differentiating ln �, using 

something called implicit differentiation, will be shown in the Differentiation II notes. 

 

1.11.8 A summary about the concept of limits 

In my opinion one cannot underestimate the importance and subtlety of the idea and use of 

limits. We have seen many occasion, via the use of table of limiting values, that as δx 

approached 0 (or any variable approached any given value) we obtained specific results to 

certain ratio. Examples of these ratios include 

lim →+ ,1 � 1�- � . , lim��→� sin �� � 1 , lim� →� cos �� � 1�� � 0 , 
 

lim� →�3� � 1�� � 1  when 3 � . , lim� →� log� ,1 � ��� -
 /� � 1  when 3 � . . 

 

So, the process of two numbers approaching 0 (or some other value) is not the same as the 

numbers actually being equal to 0 (or that other value). This is a crucial and important 

difference when we come to divide these two numbers. For example, both  1 O 10C����� and 9.999…O 10CD����� are very close to 0.  

However,  1 O 10C�����9.999…O 10CD����� 

is not 0/0 but an actual result which is very close to 1. Nervertheless, even these two numbers 

are “infinitely” miles away from being “infinitely” close to 0, so we continue making these two 

numbers approach 0 forever. Even though we continue this “approaching 0” process for ever 

we still end up with an actual result to the division, and we define the ultimate final result of 

the division to be 1. 

 
This concept applies to all evaluatable limits (not all limits are evaluatable). So in the proof of  

lim�→��sin �/� � 1 
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in section 1.11.2, the area of the triangles and the area of the sector individually become 0 as θ 

approaches 0. However, the ratio of the arc length to vertical length of the inner triangle 

equals 1 as θ  approaches 0, even though the sector and triangle areas disappear! This is the 

hidden feature of the geometric construction shown in section 1.11.2, and many other 

geometries elsewhere in mathematics 

 
But things are even more subtle than this. In the proof of the derivative of sin � in section 

1.11.1 on p63 we saw the following limit: 

lim� →� cos ,� + ��
2 - . 

In this case it might seem that we don’t need to use limits since we are not dividing by δx, 

hence we will not get the situation of 0/0. Therefore, we might as well do δx = 0. However, 

even in this situation we cannot do this despite the fact that it would work to give us the 

correct answer. This is because the requirement for the use of limits isn’t about whether we 

are dividing quantities which may each be approaching zero, but about whether the function cos�� � ��/2) will actually approach cos � as δx approaches 0. In other words it is about the 

effect of δx approaching 0 that is crucial, irrespective of any division that may or may not be 

occuring between quantities. And the fact that cos�� � ��/2) → cos � as �� → 0 is not 

obvious, and has to be proved (something which is done iusing more advanced maths). 

 
Ultimately, limits can be seen to be a hidden feature of number combinations and function 

combinations in general. No wonder it took thousands of years, from the time of Achilles and 

his tortoise, to the end of the 19th century to come to grips with infinitessimals and limits. 

 

1.12 Not all functions have a derivative  

You might think that all functions have derivatives. After all, we have seen that powers of x 

have derivatives, trig functions have derivatives, and the log and exponential functions have 

derivatives. 

 
However, these are not the only functions in existence. There are some function for which we 

cannot evaluate a slope at certain points, and therefore these functions do not have a 

derivative at those points. We will see how and why this is so in a moment. There are also 

some functions which do not have a derivative anywhere at all along the function. This means 

that there is nowhere on the curve of the function where we can calculate its slope. These 

functions are difficult to conceptualise although they have well defined expressions. 
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1.12.1 Functions continuous at a point but whose derivatives are not continuous at that point 

We have to be careful about the way we speak. When we say “A function can be differentiated” 

what we are really saying is that the function has a derivative (i.e. a gradient or slope) at any 

and every point we care to choose in the domain [a, b] of the function. So we can choose a 

point x = c anywhere in [a, b], and the curve of f(x) will have a slope at x = c. In other words, 

f(x) will be differentiable at that point.  

 

To see what it is that makes functions not have a derivative at a point let us compare the 

functions f(x) = x2 and g(x) = |x|, the graphs of which are shown below: 

 

  

 

f(x) = x2 is a function which has a derivative anywhere and everywhere along x2. But g(x) = |x| 

does not have a derivative everywhere along |x|. There is one point where |x| does not have a 

derivative. Or, to put it another way, there is one point on the line of |x| where we cannot 

calculate the slope. This is because when we try to do so we end up with an infinite number of 

possible results, and not the unique result we need. 

 
Why? What is it about x2 that allows us to find its slope anywhere but not so for |x|? Well, 

looking at the graphs above we see that one difference between x2 and |x| is that the latter 

function has a “corner” point located at (0, 0), whereas the former does not. This corner point, 

or lack of it, relates to the smoothness of bending of the line/curve, and this smoothness of 

bending is related to how the slope changes direction: does it change direction smoothly or 

abruptly?  
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From the graphs above we notice that the change in the direction of the slope of x2 on the left 

hand side of x = 0 is continuous. The change in the direction of the slope of x2 on the right hand 

side of x = 0 is also continous. Visually this is seen as a smooth bending of the curve as x 

passes though 0 from the left to right.  

 

Not so with |x|. In the graph above we see that there is a sudden/sharp change in the direction 

of the linear function: one moment it is continuously going downward, then the next moment 

it suddenly changes direction to go upwards. This suddenness of change in direction is so 

sudden that it gives rise to the aforementioned corner at x = 0. This is one of the reasons why 

|x| has no slope/derivative at x = 0: a complete and total lack of smoothness in the bending of 

the curve. 

 
To see this effect at a more practical level consider the function 

ℎ�� � � �� � 3 if � < 1
−2� + 6 if � ≥ 1

 

The graph of this function is  

 

 

 

Let say we want to find the slope of h�� at x = 1. We already know from our previous h��  
doesn’t have a slope here, but let us see what happens when we actually try to calculate the 

slope using the definition of the derivative. In order to do this we have to find the value of the 

slope as we approach x = 1 from the left hand side, and compare this with the value of the 

slope as we approach x = 1 from the right hand side (we have seen this idea before in section 
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1.2.1 and section 1.2.3 of approaching a point from the left hand side and the right hand side 

separately). 

 
Also, note that approaching x = 1 from the left hand side is equivalent to letting δx approach 0 

from the left hand side of x = 1, and this is symbolised by writing a superscript minus sign on 

the number 0: �� → 0C. Similarly, approaching x = 1 from the right hand side is equivalent to 

letting δx approach 0 from the right hand side of x = 1, and this is symbolised by writing a 

superscript plus sign on the number 0: �� → 0x.    

 
So, in order to distinguish these two cases we will need to set up two separate expressions for 

the derivative of h�� at x = 1: 

approaching x = 1 from the left hand side: 
0ℎ0� � lim� →��

ℎ�1 � �� � ℎ�1��  ; 
approaching x = 1 from the right hand side: 

0ℎ0� � lim� →��
ℎ�1 � �� � ℎ�1��  . 

 
Now we have to use the correct functions in these expressions. So, looking carefully at the 

definition of h(x) we see that �� � 3 is defined for all values x < 1, but not for the value x = 1 

(or greater). In this case all we can do is to approach x = 1 from the left hand side. Hence, the 

relevant part of h(x) is ℎ�� � �� � 3, so ℎ�1 � �� � �1 � ��� � 3 (remember that, here, δx 

is negative since we are on the left hand side of x = 1, hence we are really looking at 1 � �� 

where, in this case, δx is just the distance on the left hand side of x = 1. See section 1.4 where 

this is discussed in more detail). However, ℎ�1 represent the function evaluated at x = 1. The 

only function defined when x = 1 is ℎ�� � �2� � 6 so we will use this in order to evaluate 

h(1).  

 
So we have 0ℎ0� � lim� →��

4�1 � ��� � 35 � 4�2�1 � 65��  . 
 

All we do now is to use algebra to expand and simplify this expression: 

0ℎ0� � lim� →�� 4�1 � 2�� � ���� � 35 � 445��  , 
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 � lim� →�� 2�� � ������  , 
 � lim� →���2 � �� . 

 

Evaluating the last limit gives us 0ℎ/0� � 2. This is how steep the curve is as get infinitely 

close to x = 1 from the left hand side.  

 
We now find the slope of the curve of the function when we approach x = 1 from the right 

hand side. In this case ℎ�1 � �� � �2�1 � �� � 6. This is because we are on the right hand 

side of x = 1 and the relevant function in this situation is �2� � 6.  

 
So we have 0ℎ0� � lim� →��

4�2�1 � �� � 65 � 4�2�1 � 65��  . 
 

Expanding and simplify this expression we get 

0ℎ0� � lim� →�� 4��2 � 2�� � 65 � 445��  , 
 � lim� →���2����  , 

 

Evaluating the last limit gives us 0ℎ/0� � �2. This is how steep the curve is as get infinitely 

close to x = 1 from the right hand side.  

 
But this is not the same answer as the one we got  

when we approached x = 1 from the left hand side. 

 
This is what happens when a function is continuous at a point but does not have a derivative 

at that point: we get two different answers for our slope. 
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1.12.2 Functions which are not continuous at a point 

In the previous section we saw that the reason there was no derivative at x = 1 was because 

the derivative of the function itself was not continuous there even though the function itself 

was continuous there. One might say that, at x = 1, the function is not broken but its derivative 

is. 

 
However, thee is another reason why a function would not have a derivative at a given point, 

and that is because the function itself is broken/not continuous. To see this consider the 

function 

ℎ�� � � �� � 3 if � < 1
−2� + 4 if � ≥ 1

 

 
The graph of this function is  

 

 

 

Let say we want to find the slope of h�� at x = 1. We know from our previous study on the 

derivative that in order for there to be a valid slope at x = 1 we need to get the same answer 

for the slope when we approach x = 1 from the left hand side as when we approach x = 1 from 

the right hand side. But our work on this has always presupposed that the curve was 

continuous, in other words that the curve had no breaks in it.  
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However, from the graph above, and by the way h(x) is defined, we see that the curve of h(x) 

has a break at x = 1. Will this situation still allows us to find the slope of the curve at x = 1? In 

other words will the curve be changing at the same rate, and in the same direction, as we get 

infinitely close to x = 1 from the left and right hand side? If so then the curve of h(x) will have a 

slope at x = 1 even though it is not continuous there. Otherwise, the curve will not have a slope 

at x = 1, and h(x) will not have a derivative there. In order to find out we will have to use the 

definition of the derivative to calculate the value of the slope as we approach x = 1 from the 

left and right hand side.  

 

So, looking carefully at the definition of h(x) we see that �� � 3 is defined for all values x < 1, 

but not for the value x = 1 (or greater). In this case all we can do is to approach x = 1 from the 

left hand side. Hence, the relevant part of h(x) is ℎ�� � �� � 3, so ℎ�1 � �� � �1 � ��� � 3 

(remember that, here, δx is negative since we are on the left hand side of x = 1, hence we are 

really looking at 1 � �� where, now, δx is just the distance on the left hand side of x = 1). 

However, ℎ�1 represent the function evaluated at x = 1. The only function defined when x = 1 

is ℎ�� � �2� � 4 so we will use this in order to evaluate h(1).  

 
So we have 0ℎ0� � lim� →��

4�1 � ��� � 35 � 4�2�1 � 45��  . 
 

All we do now is to use algebra to expand and simplify this expression: 

0ℎ0� � lim� →�� 4�1 � 2�� � ���� � 35 � 425��  , 
 � lim� →�� 2 � 2�� � ������  , 
 � lim� →�� , 2�� � 2 � ��- . 

 

Trying to evaluate the last limit shows us that 0ℎ/0� approaches infinity. What this means in 

practical terms is that there is no measurable slope to h(x) at x = 1, irrespective of the answer 

we get to 0ℎ/0� as we approach x = 1 from the right hand side. 
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However, it might still be instructive to find the slope of the curve of the function when we 

approach x = 1 from the right hand side. In this case ℎ�1 + ��) = −2(1 + ��) + 4.  

 

So we have 0ℎ0� � lim� →��
4−2(1 + ��) + 45 − 4−2(1) + 45

��  . 
 
Expanding and simplify this expression we get 0ℎ0� � lim� →��

−2��
��  . 

 
Evaluating the last limit gives us 0ℎ/0� = −2. Ini this case we see that there is a measurable 

slope as we get infinitely close to x = 1 from the right hand side.  

 
What this example shows us is that when a function is not continuous (i.e. broken) at a point 

on its curve the slope of the function on one side of that point will not exist even if it does 

exists on the other side of that point.  

 

1.12.3 A continuous function that does not have a slope anywhere along its curve 

We have seen that continuous functions can be non-differentiable at a point. One example is %�� � |�| which cannot be differentiated at x = 0. What about other functions? What about 

trying to find the derivative of the function %�� � |�||� � 1|? Graphically f(x) looks like this: 

 

This is basically like the quadratic %�� � ��� � 1) but with the negative part of the curve 

reflected about the x-axis. By this effect (which is due to the effect of the modulus function) we 

end up with two corners, one at x = 0 and one at x = 1.   
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From our previous discussion we see that the curve has no slope at x = 0 or x = 1. Another way 

of saying this is that the function does not have a derivative at x = 0 or x = 1. The same applies 

for the functions listed below: 

 

 

The function %�� � |�||� � 1||� − 2|. 
There is no slope to the curve of  f(x) at x = 0, 1, 2 

 

 

 

The function %�� � |�||� � 1||� − 2||� − 3|. 
There is no slope to the curve of  f(x) at x = 0, 1, 2, 3 
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In fact, any function f(x) involving the modulus function will give rise to points where f(x) 

cannot be differentiated. For example, for %�� � |sin �| (shown below) we see that, since 

sin � is valid for all �∞ < � < ∞ (i.e. sin � extends infinitely left and right) there are an 

infinite number of points where we cannot find the slope of f(x), and therefore where f(x) 

cannot be differentiated at thos points. 

 

 

The graph of the function %�� � |sin �| 
There is no slope to the curve of  f(x) at x = ±nπ, for n = 1, 2, 3, … 

 
Even though these function have some points at which we cannot differentiate them, they are 

still differentiable elsewhere. We can still find the slope of these curves at other points in their 

domain. So it seems that however many corner points a curve may have there will always be 

parts of the curve between these corners where a slope can be found and the function can be 

differentiated.  

 
But this is not the case. There are functions which are continuous everyhwere but for which 

we cannot calculate a slope anywhere along the curve of the function. Roughly speaking these 

function are such that their curves bend so fast that they end up being “broken” along the 

whole of the length of the curve. In other words, the whole of the curve is corners. The curve 

is made up only of corners, and there is no part of the curve that doesn’t have a corner. These 

functions are indeed continuous but nowhere differentiable.  
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One such function is the Weierstrass function, created by the German mathematician Karl 

Weierstrass (1815 – 1897). It is a summation function is given by  

%�� � �3> cos�Q>l�+
>��  

where 0 < 3 < 1, 3Q m 1 and Q � 1. The key thing which makes this function nothing but 

corners all along the path of its curve is the fact that, because of the infinite number of terms 

in the series, the rate of bending of the curve ends up being so fast that the curve “breaks” 

everywhere along its path. This then makes the function undifferentiable anywhere along the 

curve.  

 
This aspect of the rate of bending of the curve being so fast can be visualised by running the 

summation formula above. There are two main ways we could do this. We could either fix 

values for a and b and simply increase the number of terms n, or we could fix values for a and 

n and increase the value of b.  

 

The graphs below illustrated on p98 below are for the case when a and b are fixed at 0.5 and 2 

respectively, with n running from 0 to 2. Now, keeping n fixed at n = 2, (with a still at a = 0.5), 

the graphs illustrated on p## are for the cases when we increase b from 2 onwards in integer 

steps. 
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a  

 n = 0 (i.e. one term in the summation) n = 1 (i.e. two terms in the summation) 

  (a = 0.5, b=2) (a = 0.5, b=2) 

 

n = 2 (i.e. three term in the summation) 
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 b = 3 (a = 0.5, n = 3)  b = 5 (a = 0.5, n = 3) 

 

   

 b = 7 (a = 0.5, n = 3) b = 10 (a = 0.5, n = 3) 
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The more terms we add in the summation, or the more we increase the value b, the more 

spicked the function becomes until the whole function is nothing but corners: still continuous 

everywhere but not diffeentiable anywhere. Ultimately, for a b value of b = 100 we have 

 

even though we have only three terms in the sum. Each upward and downward part of the 

curve becomes more and more vertical, as well becoming packed closer and closer together. 

Also, the apex and trough of each curve becomes more and more curved. Ultimatley, either as 

n → ∞ and/or b → ∞, the upward and downwards parts of the curve get so close together that 

all gaps between them disappear, and apexes and troughs are no longer curved but are sharp 

corners. We then have a curve which is continous everywhere but differentiable nowhere 

since it is made up of corners all along the length of the curve. 

 

If you are interested in seeing other function with this non-differentiable property you can 

search for the Blancmange function (also known as th eTakagi function), or the saw-tooth 

function. 
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1.13 A study on derivatives and tangents (to come) 

 

1.13.1 An algebraic definition of dy/dx 

 

1.13.2 The derivative as a linear transformation 

 

1.13.3 On subtangents 

 

1.13.4 Fixed point iteration approach to derivatives 

 

1.13.5 The Derivative through the Iteration of Linear Functions 

 

1.13.6 Limit-free differentiation 

 

1.13.7 The tangent not as a limit of secants 

 

1.13.8 The tangent parabola 

 

1.13.9 An area approach to the first derivative 

 

1.13.10 An area approach to the second derivative 

 

 

 


